Update app.py
Browse files
app.py
CHANGED
@@ -168,27 +168,15 @@ if st.button("Results"):
|
|
168 |
labels = ["person", "location", "country", "city", "organization", "time", "date", "product", "event name", "money", "affiliation", "ordinal value", "percent value", "position"]
|
169 |
entities = model.predict_entities(text, labels)
|
170 |
df = pd.DataFrame(entities)
|
171 |
-
|
172 |
properties = {"border": "2px solid gray", "color": "blue", "font-size": "16px"}
|
173 |
df_styled = df.style.set_properties(**properties)
|
174 |
st.dataframe(df_styled)
|
175 |
-
|
176 |
-
value_counts1 = df['label'].value_counts()
|
177 |
-
|
178 |
-
df1 = pd.DataFrame(value_counts1)
|
179 |
-
|
180 |
-
final_df = df1.reset_index().rename(columns={"index": "label"})
|
181 |
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
fig1.update_traces(textposition='inside', textinfo='percent+label')
|
186 |
-
st.plotly_chart(fig1)
|
187 |
-
with col2:
|
188 |
-
fig2 = px.bar(final_df, x="count", y="label", color="label", text_auto=True, title='Occurrences of predicted labels')
|
189 |
-
st.plotly_chart(fig2)
|
190 |
-
|
191 |
-
dfa = pd.DataFrame(
|
192 |
data={
|
193 |
|
194 |
'text': ['entity extracted from file'], 'score': ['accuracy score'], 'label': ['label assigned to the extracted entity'],
|
|
|
168 |
labels = ["person", "location", "country", "city", "organization", "time", "date", "product", "event name", "money", "affiliation", "ordinal value", "percent value", "position"]
|
169 |
entities = model.predict_entities(text, labels)
|
170 |
df = pd.DataFrame(entities)
|
171 |
+
st.dataframe(df)
|
172 |
properties = {"border": "2px solid gray", "color": "blue", "font-size": "16px"}
|
173 |
df_styled = df.style.set_properties(**properties)
|
174 |
st.dataframe(df_styled)
|
175 |
+
|
|
|
|
|
|
|
|
|
|
|
176 |
|
177 |
+
|
178 |
+
|
179 |
+
dfa = pd.DataFrame(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
data={
|
181 |
|
182 |
'text': ['entity extracted from file'], 'score': ['accuracy score'], 'label': ['label assigned to the extracted entity'],
|