nlpblogs commited on
Commit
f16cc1f
·
verified ·
1 Parent(s): 9359ff9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -17
app.py CHANGED
@@ -168,27 +168,15 @@ if st.button("Results"):
168
  labels = ["person", "location", "country", "city", "organization", "time", "date", "product", "event name", "money", "affiliation", "ordinal value", "percent value", "position"]
169
  entities = model.predict_entities(text, labels)
170
  df = pd.DataFrame(entities)
171
-
172
  properties = {"border": "2px solid gray", "color": "blue", "font-size": "16px"}
173
  df_styled = df.style.set_properties(**properties)
174
  st.dataframe(df_styled)
175
- if df is not None:
176
- value_counts1 = df['label'].value_counts()
177
-
178
- df1 = pd.DataFrame(value_counts1)
179
-
180
- final_df = df1.reset_index().rename(columns={"index": "label"})
181
 
182
- col1, col2 = st.columns(2)
183
- with col1:
184
- fig1 = px.pie(final_df, values='count', names='label', hover_data=['count'], labels={'count': 'count'}, title='Percentage of predicted labels')
185
- fig1.update_traces(textposition='inside', textinfo='percent+label')
186
- st.plotly_chart(fig1)
187
- with col2:
188
- fig2 = px.bar(final_df, x="count", y="label", color="label", text_auto=True, title='Occurrences of predicted labels')
189
- st.plotly_chart(fig2)
190
-
191
- dfa = pd.DataFrame(
192
  data={
193
 
194
  'text': ['entity extracted from file'], 'score': ['accuracy score'], 'label': ['label assigned to the extracted entity'],
 
168
  labels = ["person", "location", "country", "city", "organization", "time", "date", "product", "event name", "money", "affiliation", "ordinal value", "percent value", "position"]
169
  entities = model.predict_entities(text, labels)
170
  df = pd.DataFrame(entities)
171
+ st.dataframe(df)
172
  properties = {"border": "2px solid gray", "color": "blue", "font-size": "16px"}
173
  df_styled = df.style.set_properties(**properties)
174
  st.dataframe(df_styled)
175
+
 
 
 
 
 
176
 
177
+
178
+
179
+ dfa = pd.DataFrame(
 
 
 
 
 
 
 
180
  data={
181
 
182
  'text': ['entity extracted from file'], 'score': ['accuracy score'], 'label': ['label assigned to the extracted entity'],