Spaces:
Runtime error
Runtime error
import subprocess | |
import sys | |
import os | |
import gradio as gr | |
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor | |
from qwen_vl_utils import process_vision_info | |
import torch | |
import pandas as pd | |
import pytesseract | |
import cv2 | |
import pymssql | |
# Hardcoded Hugging Face token and SQL server IP address | |
SERVER_IP = "35.227.148.156" | |
# Install dependencies in smaller chunks to avoid memory issues | |
def install_dependencies(): | |
dependency_groups = [ | |
["pip==23.3.1", "setuptools", "wheel"], | |
["pytesseract"], | |
["torch==2.1.0+cpu", "torchvision==0.16.0+cpu", "torchaudio==2.1.0+cpu"], | |
["transformers==4.38.2", "auto-gptq==0.7.1", "autoawq==0.2.8"], | |
["qwen_vl_utils==0.0.8", "gradio==4.27.0"], | |
["pyodbc", "sqlalchemy", "azure-storage-blob", "pymssql", "pandas", "opencv-python"] | |
] | |
for group in dependency_groups: | |
for package in group: | |
subprocess.check_call([sys.executable, "-m", "pip", "install", package], stdout=sys.stdout, stderr=sys.stderr) | |
print(f"Installed {package}") | |
install_dependencies() | |
# Install system dependencies (executed separately to avoid timeout issues) | |
def install_system_dependencies(): | |
commands = [ | |
"apt-get update", | |
"apt-get install -y unixodbc-dev tesseract-ocr", | |
"ACCEPT_EULA=Y apt-get install -y msodbcsql17" | |
] | |
for command in commands: | |
subprocess.run(command, shell=True, check=True) | |
print(f"Executed: {command}") | |
install_system_dependencies() | |
# Initialize model and processor with CPU mode | |
model = Qwen2VLForConditionalGeneration.from_pretrained( | |
"Qwen/Qwen2-VL-2B-Instruct-AWQ", | |
torch_dtype="auto", | |
use_auth_token=HUGGINGFACE_API_KEY | |
) | |
# Force model to use CPU to avoid memory issues on Hugging Face Spaces | |
model.to("cpu") | |
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct-AWQ", use_auth_token=HUGGINGFACE_API_KEY) | |
pytesseract.pytesseract_cmd = r'/usr/bin/tesseract' | |
# Function to preprocess the image for OCR | |
def preprocess_image(image_path): | |
image = cv2.imread(image_path) | |
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) | |
_, binary = cv2.threshold(gray, 150, 255, cv2.THRESH_BINARY) | |
return binary | |
# Function to extract text using OCR | |
def ocr_extract_text(image_path): | |
preprocessed_image = preprocess_image(image_path) | |
return pytesseract.image_to_string(preprocessed_image) | |
# Function to process image and extract details | |
def process_image(image_path): | |
try: | |
messages = [{ | |
"role": "user", | |
"content": [ | |
{"type": "image", "image": image_path}, | |
{"type": "text", "text": ( | |
"Extract the following details from the invoice:\n" | |
"- 'invoice_number'\n" | |
"- 'date'\n" | |
"- 'place'\n" | |
"- 'amount' (monetary value in the relevant currency)\n" | |
"- 'category' (based on the invoice type)" | |
)} | |
] | |
}] | |
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
image_inputs, video_inputs = process_vision_info(messages) | |
inputs = processor(text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt") | |
inputs = inputs.to(model.device) | |
generated_ids = model.generate(**inputs, max_new_tokens=128) | |
output_text = processor.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False) | |
return parse_details(output_text[0]) | |
except Exception as e: | |
print(f"Model failed, falling back to OCR: {e}") | |
ocr_text = ocr_extract_text(image_path) | |
return parse_details(ocr_text) | |
# Function to parse details from extracted text | |
def parse_details(details): | |
parsed_data = { | |
"Invoice Number": None, | |
"Date": None, | |
"Place": None, | |
"Amount": None, | |
"Category": None | |
} | |
lines = details.split("\n") | |
for line in lines: | |
lower_line = line.lower() | |
if "invoice" in lower_line: | |
parsed_data["Invoice Number"] = line.split(":")[-1].strip() | |
elif "date" in lower_line: | |
parsed_data["Date"] = line.split(":")[-1].strip() | |
elif "place" in lower_line: | |
parsed_data["Place"] = line.split(":")[-1].strip() | |
elif any(keyword in lower_line for keyword in ["total", "amount", "cost"]): | |
parsed_data["Amount"] = line.split(":")[-1].strip() | |
else: | |
parsed_data["Category"] = "General" | |
return parsed_data | |
# Store extracted data in Azure SQL Database | |
def store_to_azure_sql(dataframe): | |
conn_str = ( | |
f"Driver={{ODBC Driver 17 for SQL Server}};" | |
f"Server={SERVER_IP};" | |
"Database=Invoices;" | |
"UID=pio-admin;" | |
"PWD=Poctest123#;" | |
) | |
try: | |
with pymssql.connect(SERVER_IP, "pio-admin", "Poctest123#", "Invoices") as conn: | |
cursor = conn.cursor() | |
create_table_query = """ | |
IF NOT EXISTS (SELECT * FROM sysobjects WHERE name='Invoices' AND xtype='U') | |
CREATE TABLE Invoices ( | |
InvoiceNumber NVARCHAR(255), | |
Date NVARCHAR(255), | |
Place NVARCHAR(255), | |
Amount NVARCHAR(255), | |
Category NVARCHAR(255) | |
) | |
""" | |
cursor.execute(create_table_query) | |
for _, row in dataframe.iterrows(): | |
insert_query = """ | |
INSERT INTO Invoices (InvoiceNumber, Date, Place, Amount, Category) | |
VALUES (%s, %s, %s, %s, %s) | |
""" | |
cursor.execute(insert_query, (row['Invoice Number'], row['Date'], row['Place'], row['Amount'], row['Category'])) | |
conn.commit() | |
print("Data successfully stored in Azure SQL Database.") | |
except Exception as e: | |
print(f"Error storing data to database: {e}") | |
# Gradio interface for invoice processing | |
def gradio_interface(image_files): | |
results = [] | |
for image_file in image_files: | |
details = process_image(image_file) | |
results.append(details) | |
df = pd.DataFrame(results) | |
store_to_azure_sql(df) | |
return df | |
# Launch Gradio interface | |
grpc_interface = gr.Interface( | |
fn=gradio_interface, | |
inputs=gr.Files(label="Upload Invoice Images"), | |
outputs=gr.Dataframe(interactive=True), | |
title="Invoice Extraction System", | |
) | |
if __name__ == "__main__": | |
grpc_interface.launch(share=True) | |