Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import subprocess
|
2 |
+
import sys
|
3 |
+
import os
|
4 |
+
import gradio as gr
|
5 |
+
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
|
6 |
+
from qwen_vl_utils import process_vision_info
|
7 |
+
import torch
|
8 |
+
import pandas as pd
|
9 |
+
import pytesseract
|
10 |
+
import cv2
|
11 |
+
import pymssql
|
12 |
+
|
13 |
+
# Hardcoded Hugging Face token and SQL server IP address
|
14 |
+
|
15 |
+
SERVER_IP = "35.227.148.156"
|
16 |
+
|
17 |
+
# Install dependencies in smaller chunks to avoid memory issues
|
18 |
+
def install_dependencies():
|
19 |
+
dependency_groups = [
|
20 |
+
["pip==23.3.1", "setuptools", "wheel"],
|
21 |
+
["pytesseract"],
|
22 |
+
["torch==2.1.0+cpu", "torchvision==0.16.0+cpu", "torchaudio==2.1.0+cpu"],
|
23 |
+
["transformers==4.38.2", "auto-gptq==0.7.1", "autoawq==0.2.8"],
|
24 |
+
["qwen_vl_utils==0.0.8", "gradio==4.27.0"],
|
25 |
+
["pyodbc", "sqlalchemy", "azure-storage-blob", "pymssql", "pandas", "opencv-python"]
|
26 |
+
]
|
27 |
+
|
28 |
+
for group in dependency_groups:
|
29 |
+
for package in group:
|
30 |
+
subprocess.check_call([sys.executable, "-m", "pip", "install", package], stdout=sys.stdout, stderr=sys.stderr)
|
31 |
+
print(f"Installed {package}")
|
32 |
+
|
33 |
+
install_dependencies()
|
34 |
+
|
35 |
+
# Install system dependencies (executed separately to avoid timeout issues)
|
36 |
+
def install_system_dependencies():
|
37 |
+
commands = [
|
38 |
+
"apt-get update",
|
39 |
+
"apt-get install -y unixodbc-dev tesseract-ocr",
|
40 |
+
"ACCEPT_EULA=Y apt-get install -y msodbcsql17"
|
41 |
+
]
|
42 |
+
for command in commands:
|
43 |
+
subprocess.run(command, shell=True, check=True)
|
44 |
+
print(f"Executed: {command}")
|
45 |
+
|
46 |
+
install_system_dependencies()
|
47 |
+
|
48 |
+
# Initialize model and processor with CPU mode
|
49 |
+
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
50 |
+
"Qwen/Qwen2-VL-2B-Instruct-AWQ",
|
51 |
+
torch_dtype="auto",
|
52 |
+
use_auth_token=HUGGINGFACE_API_KEY
|
53 |
+
)
|
54 |
+
|
55 |
+
# Force model to use CPU to avoid memory issues on Hugging Face Spaces
|
56 |
+
model.to("cpu")
|
57 |
+
|
58 |
+
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct-AWQ", use_auth_token=HUGGINGFACE_API_KEY)
|
59 |
+
|
60 |
+
pytesseract.pytesseract_cmd = r'/usr/bin/tesseract'
|
61 |
+
|
62 |
+
# Function to preprocess the image for OCR
|
63 |
+
def preprocess_image(image_path):
|
64 |
+
image = cv2.imread(image_path)
|
65 |
+
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
66 |
+
_, binary = cv2.threshold(gray, 150, 255, cv2.THRESH_BINARY)
|
67 |
+
return binary
|
68 |
+
|
69 |
+
# Function to extract text using OCR
|
70 |
+
def ocr_extract_text(image_path):
|
71 |
+
preprocessed_image = preprocess_image(image_path)
|
72 |
+
return pytesseract.image_to_string(preprocessed_image)
|
73 |
+
|
74 |
+
# Function to process image and extract details
|
75 |
+
def process_image(image_path):
|
76 |
+
try:
|
77 |
+
messages = [{
|
78 |
+
"role": "user",
|
79 |
+
"content": [
|
80 |
+
{"type": "image", "image": image_path},
|
81 |
+
{"type": "text", "text": (
|
82 |
+
"Extract the following details from the invoice:\n"
|
83 |
+
"- 'invoice_number'\n"
|
84 |
+
"- 'date'\n"
|
85 |
+
"- 'place'\n"
|
86 |
+
"- 'amount' (monetary value in the relevant currency)\n"
|
87 |
+
"- 'category' (based on the invoice type)"
|
88 |
+
)}
|
89 |
+
]
|
90 |
+
}]
|
91 |
+
|
92 |
+
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
93 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
94 |
+
inputs = processor(text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt")
|
95 |
+
inputs = inputs.to(model.device)
|
96 |
+
|
97 |
+
generated_ids = model.generate(**inputs, max_new_tokens=128)
|
98 |
+
output_text = processor.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
|
99 |
+
|
100 |
+
return parse_details(output_text[0])
|
101 |
+
|
102 |
+
except Exception as e:
|
103 |
+
print(f"Model failed, falling back to OCR: {e}")
|
104 |
+
ocr_text = ocr_extract_text(image_path)
|
105 |
+
return parse_details(ocr_text)
|
106 |
+
|
107 |
+
# Function to parse details from extracted text
|
108 |
+
def parse_details(details):
|
109 |
+
parsed_data = {
|
110 |
+
"Invoice Number": None,
|
111 |
+
"Date": None,
|
112 |
+
"Place": None,
|
113 |
+
"Amount": None,
|
114 |
+
"Category": None
|
115 |
+
}
|
116 |
+
|
117 |
+
lines = details.split("\n")
|
118 |
+
for line in lines:
|
119 |
+
lower_line = line.lower()
|
120 |
+
if "invoice" in lower_line:
|
121 |
+
parsed_data["Invoice Number"] = line.split(":")[-1].strip()
|
122 |
+
elif "date" in lower_line:
|
123 |
+
parsed_data["Date"] = line.split(":")[-1].strip()
|
124 |
+
elif "place" in lower_line:
|
125 |
+
parsed_data["Place"] = line.split(":")[-1].strip()
|
126 |
+
elif any(keyword in lower_line for keyword in ["total", "amount", "cost"]):
|
127 |
+
parsed_data["Amount"] = line.split(":")[-1].strip()
|
128 |
+
else:
|
129 |
+
parsed_data["Category"] = "General"
|
130 |
+
|
131 |
+
return parsed_data
|
132 |
+
|
133 |
+
# Store extracted data in Azure SQL Database
|
134 |
+
def store_to_azure_sql(dataframe):
|
135 |
+
conn_str = (
|
136 |
+
f"Driver={{ODBC Driver 17 for SQL Server}};"
|
137 |
+
f"Server={SERVER_IP};"
|
138 |
+
"Database=Invoices;"
|
139 |
+
"UID=pio-admin;"
|
140 |
+
"PWD=Poctest123#;"
|
141 |
+
)
|
142 |
+
try:
|
143 |
+
with pymssql.connect(SERVER_IP, "pio-admin", "Poctest123#", "Invoices") as conn:
|
144 |
+
cursor = conn.cursor()
|
145 |
+
create_table_query = """
|
146 |
+
IF NOT EXISTS (SELECT * FROM sysobjects WHERE name='Invoices' AND xtype='U')
|
147 |
+
CREATE TABLE Invoices (
|
148 |
+
InvoiceNumber NVARCHAR(255),
|
149 |
+
Date NVARCHAR(255),
|
150 |
+
Place NVARCHAR(255),
|
151 |
+
Amount NVARCHAR(255),
|
152 |
+
Category NVARCHAR(255)
|
153 |
+
)
|
154 |
+
"""
|
155 |
+
cursor.execute(create_table_query)
|
156 |
+
|
157 |
+
for _, row in dataframe.iterrows():
|
158 |
+
insert_query = """
|
159 |
+
INSERT INTO Invoices (InvoiceNumber, Date, Place, Amount, Category)
|
160 |
+
VALUES (%s, %s, %s, %s, %s)
|
161 |
+
"""
|
162 |
+
cursor.execute(insert_query, (row['Invoice Number'], row['Date'], row['Place'], row['Amount'], row['Category']))
|
163 |
+
conn.commit()
|
164 |
+
print("Data successfully stored in Azure SQL Database.")
|
165 |
+
except Exception as e:
|
166 |
+
print(f"Error storing data to database: {e}")
|
167 |
+
|
168 |
+
# Gradio interface for invoice processing
|
169 |
+
def gradio_interface(image_files):
|
170 |
+
results = []
|
171 |
+
for image_file in image_files:
|
172 |
+
details = process_image(image_file)
|
173 |
+
results.append(details)
|
174 |
+
|
175 |
+
df = pd.DataFrame(results)
|
176 |
+
store_to_azure_sql(df)
|
177 |
+
return df
|
178 |
+
|
179 |
+
# Launch Gradio interface
|
180 |
+
grpc_interface = gr.Interface(
|
181 |
+
fn=gradio_interface,
|
182 |
+
inputs=gr.Files(label="Upload Invoice Images"),
|
183 |
+
outputs=gr.Dataframe(interactive=True),
|
184 |
+
title="Invoice Extraction System",
|
185 |
+
)
|
186 |
+
|
187 |
+
if __name__ == "__main__":
|
188 |
+
grpc_interface.launch(share=True)
|