Spaces:
Running
Running
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import numpy as np | |
import scipy.io.wavfile as wav | |
from scipy.fftpack import idct | |
import gradio as gr | |
import os | |
import matplotlib.pyplot as plt | |
from huggingface_hub import hf_hub_download | |
from transformers import Speech2TextForConditionalGeneration, Speech2TextProcessor | |
from transformers import pipeline, SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan | |
from datasets import load_dataset | |
import soundfile as sf | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
print(f"Using device: {device}") | |
# Load speech-to-text model | |
try: | |
speech_recognizer = Speech2TextForConditionalGeneration.from_pretrained("facebook/s2t-small-librispeech-asr").to(device) | |
speech_processor = Speech2TextProcessor.from_pretrained("facebook/s2t-small-librispeech-asr") | |
print("Speech recognition model loaded successfully!") | |
except Exception as e: | |
print(f"Error loading speech recognition model: {e}") | |
speech_recognizer = None | |
speech_processor = None | |
# Load text-to-speech models | |
try: | |
# Load processor and model | |
tts_processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts") | |
tts_model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device) | |
tts_vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device) | |
# Load speaker embeddings | |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") | |
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0).to(device) | |
print("Text-to-speech models loaded successfully!") | |
except Exception as e: | |
print(f"Error loading text-to-speech models: {e}") | |
tts_processor = None | |
tts_model = None | |
tts_vocoder = None | |
speaker_embeddings = None | |
# Modele CNN | |
class modele_CNN(nn.Module): | |
def __init__(self, num_classes=7, dropout=0.3): | |
super(modele_CNN, self).__init__() | |
self.conv1 = nn.Conv2d(1, 16, 3, padding=1) | |
self.conv2 = nn.Conv2d(16, 32, 3, padding=1) | |
self.conv3 = nn.Conv2d(32, 64, 3, padding=1) | |
self.pool = nn.MaxPool2d(2, 2) | |
self.fc1 = nn.Linear(64 * 1 * 62, 128) | |
self.fc2 = nn.Linear(128, num_classes) | |
self.dropout = nn.Dropout(dropout) | |
def forward(self, x): | |
x = self.pool(F.relu(self.conv1(x))) | |
x = self.pool(F.relu(self.conv2(x))) | |
x = self.pool(F.relu(self.conv3(x))) | |
x = x.view(x.size(0), -1) | |
x = self.dropout(F.relu(self.fc1(x))) | |
x = self.fc2(x) | |
return x | |
# Audio processor | |
class AudioProcessor: | |
def Mel2Hz(self, mel): return 700 * (np.power(10, mel/2595)-1) | |
def Hz2Mel(self, freq): return 2595 * np.log10(1+freq/700) | |
def Hz2Ind(self, freq, fs, Tfft): return (freq*Tfft/fs).astype(int) | |
def hamming(self, T): | |
if T <= 1: | |
return np.ones(T) | |
return 0.54-0.46*np.cos(2*np.pi*np.arange(T)/(T-1)) | |
def FiltresMel(self, fs, nf=36, Tfft=512, fmin=100, fmax=8000): | |
Indices = self.Hz2Ind(self.Mel2Hz(np.linspace(self.Hz2Mel(fmin), self.Hz2Mel(min(fmax, fs/2)), nf+2)), fs, Tfft) | |
filtres = np.zeros((int(Tfft/2), nf)) | |
for i in range(nf): filtres[Indices[i]:Indices[i+2], i] = self.hamming(Indices[i+2]-Indices[i]) | |
return filtres | |
def spectrogram(self, x, T, p, Tfft): | |
S = [] | |
for i in range(0, len(x)-T, p): S.append(x[i:i+T]*self.hamming(T)) | |
S = np.fft.fft(S, Tfft) | |
return np.abs(S), np.angle(S) | |
def mfcc(self, data, filtres, nc=13, T=256, p=64, Tfft=512): | |
data = (data[1]-np.mean(data[1]))/np.std(data[1]) | |
amp, ph = self.spectrogram(data, T, p, Tfft) | |
amp_f = np.log10(np.dot(amp[:, :int(Tfft/2)], filtres)+1) | |
return idct(amp_f, n=nc, norm='ortho') | |
def process_audio(self, audio_data, sr, audio_length=32000): | |
if sr != 16000: | |
audio_resampled = np.interp( | |
np.linspace(0, len(audio_data), int(16000 * len(audio_data) / sr)), | |
np.arange(len(audio_data)), | |
audio_data | |
) | |
sgn = audio_resampled | |
fs = 16000 | |
else: | |
sgn = audio_data | |
fs = sr | |
sgn = np.array(sgn, dtype=np.float32) | |
if len(sgn) > audio_length: | |
sgn = sgn[:audio_length] | |
else: | |
sgn = np.pad(sgn, (0, audio_length - len(sgn)), mode='constant') | |
filtres = self.FiltresMel(fs) | |
sgn_features = self.mfcc([fs, sgn], filtres) | |
mfcc_tensor = torch.tensor(sgn_features.T, dtype=torch.float32) | |
mfcc_tensor = mfcc_tensor.unsqueeze(0).unsqueeze(0) | |
return mfcc_tensor | |
# Speech recognition function | |
def recognize_speech(audio_path): | |
if speech_recognizer is None or speech_processor is None: | |
return "Speech recognition model not available" | |
try: | |
# Read audio file | |
audio_data, sr = sf.read(audio_path) | |
# Resample to 16kHz if needed | |
if sr != 16000: | |
audio_data = np.interp( | |
np.linspace(0, len(audio_data), int(16000 * len(audio_data) / sr)), | |
np.arange(len(audio_data)), | |
audio_data | |
) | |
sr = 16000 | |
# Process audio | |
inputs = speech_processor(audio_data, sampling_rate=sr, return_tensors="pt") | |
inputs = {k: v.to(device) for k, v in inputs.items()} | |
# Generate transcription | |
generated_ids = speech_recognizer.generate(**inputs) | |
transcription = speech_processor.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
return transcription | |
except Exception as e: | |
return f"Speech recognition error: {str(e)}" | |
# Speech synthesis function | |
def synthesize_speech(text): | |
if tts_processor is None or tts_model is None or tts_vocoder is None or speaker_embeddings is None: | |
return None | |
try: | |
# Preprocess text | |
inputs = tts_processor(text=text, return_tensors="pt").to(device) | |
# Generate speech with speaker embeddings | |
spectrogram = tts_model.generate_speech(inputs["input_ids"], speaker_embeddings) | |
# Convert to waveform | |
with torch.no_grad(): | |
speech = tts_vocoder(spectrogram) | |
# Convert to numpy array and normalize | |
speech = speech.cpu().numpy() | |
speech = speech / np.max(np.abs(speech)) | |
return (16000, speech.squeeze()) | |
except Exception as e: | |
print(f"Speech synthesis error: {str(e)}") | |
return None | |
# Fonction prédiction | |
def predict_speaker(audio, model, processor): | |
if audio is None: | |
return "Aucun audio détecté.", None, None | |
try: | |
audio_data, sr = sf.read(audio) | |
input_tensor = processor.process_audio(audio_data, sr) | |
device = next(model.parameters()).device | |
input_tensor = input_tensor.to(device) | |
with torch.no_grad(): | |
output = model(input_tensor) | |
print(output) | |
probabilities = F.softmax(output, dim=1) | |
confidence, predicted_class = torch.max(probabilities, 1) | |
speakers = ["George", "Jackson", "Lucas", "Nicolas", "Theo", "Yweweler", "Narimene"] | |
predicted_speaker = speakers[predicted_class.item()] | |
result = f"Locuteur reconnu : {predicted_speaker} (confiance : {confidence.item()*100:.2f}%)" | |
probs_dict = {speakers[i]: float(probs) for i, probs in enumerate(probabilities[0].cpu().numpy())} | |
# Recognize speech | |
recognized_text = recognize_speech(audio) | |
return result, probs_dict, recognized_text,predicted_speaker | |
except Exception as e: | |
return f"Erreur : {str(e)}", None, None | |
# Charger modèle | |
def load_model(model_id="nareauow/my_speech_recognition", model_filename="model_3.pth"): | |
try: | |
model_path = hf_hub_download(repo_id=model_id, filename=model_filename) | |
model = modele_CNN(num_classes=7, dropout=0.) | |
model.load_state_dict(torch.load(model_path, map_location=device)) | |
model.to(device) | |
model.eval() | |
print("Modèle chargé avec succès !") | |
return model | |
except Exception as e: | |
print(f"Erreur de chargement: {e}") | |
return None | |
# Gradio Interface | |
def create_interface(): | |
processor = AudioProcessor() | |
with gr.Blocks(title="Reconnaissance de Locuteur") as interface: | |
gr.Markdown("# 🗣️ Reconnaissance de Locuteur") | |
gr.Markdown("Enregistrez votre voix pendant 2 secondes pour identifier qui parle.") | |
with gr.Row(): | |
with gr.Column(): | |
model_selector = gr.Dropdown( | |
choices=["model_1.pth", "model_2.pth", "model_3.pth"], | |
value="model_3.pth", | |
label="Choisissez le modèle" | |
) | |
audio_input = gr.Audio(sources=["microphone"], type="filepath", label="🎙️ Parlez ici") | |
record_btn = gr.Button("Reconnaître") | |
with gr.Column(): | |
result_text = gr.Textbox(label="Résultat") | |
plot_output = gr.Plot(label="Confiance par locuteur") | |
recognized_text = gr.Textbox(label="Texte reconnu") | |
audio_output = gr.Audio(label="Synthèse vocale", type="numpy") | |
def recognize(audio, selected_model): | |
model = load_model(model_filename=selected_model) | |
res, probs, text,locuteur = predict_speaker(audio, model, processor) | |
# Generate plot | |
fig = None | |
if probs: | |
fig, ax = plt.subplots() | |
ax.bar(probs.keys(), probs.values(), color='skyblue') | |
ax.set_ylim([0, 1]) | |
ax.set_ylabel("Confiance") | |
ax.set_xlabel("Locuteurs") | |
plt.xticks(rotation=45) | |
# Generate speech synthesis if text was recognized | |
synth_audio = None | |
if text and "error" not in text.lower(): | |
synth_text = f"{locuteur} said : {text}" | |
synth_audio = synthesize_speech(synth_text) | |
return res, fig, text, synth_audio | |
record_btn.click(fn=recognize, | |
inputs=[audio_input, model_selector], | |
outputs=[result_text, plot_output, recognized_text, audio_output]) | |
gr.Markdown("""### Comment utiliser ? | |
- Choisissez le modèle. | |
- Cliquez sur 🎙️ pour enregistrer votre voix. | |
- Cliquez sur **Reconnaître** pour obtenir la prédiction. | |
""") | |
return interface | |
# Lancer | |
if __name__ == "__main__": | |
app = create_interface() | |
app.launch(share=True) |