Spaces:
Running
Running
File size: 10,961 Bytes
d3d626b 09e9dae d3d626b 09e9dae d3d626b 09e9dae d3d626b d658e55 d3d626b 09e9dae d3d626b 09e9dae d3d626b 09e9dae d3d626b 09e9dae d3d626b 09e9dae d3d626b 09e9dae d3d626b d698901 09e9dae d3d626b 09e9dae d3d626b 09e9dae d3d626b 09e9dae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import scipy.io.wavfile as wav
from scipy.fftpack import idct
import gradio as gr
import os
import matplotlib.pyplot as plt
from huggingface_hub import hf_hub_download
from transformers import Speech2TextForConditionalGeneration, Speech2TextProcessor
from transformers import pipeline, SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
from datasets import load_dataset
import soundfile as sf
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
# Load speech-to-text model
try:
speech_recognizer = Speech2TextForConditionalGeneration.from_pretrained("facebook/s2t-small-librispeech-asr").to(device)
speech_processor = Speech2TextProcessor.from_pretrained("facebook/s2t-small-librispeech-asr")
print("Speech recognition model loaded successfully!")
except Exception as e:
print(f"Error loading speech recognition model: {e}")
speech_recognizer = None
speech_processor = None
# Load text-to-speech models
try:
# Load processor and model
tts_processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
tts_model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
tts_vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
# Load speaker embeddings
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0).to(device)
print("Text-to-speech models loaded successfully!")
except Exception as e:
print(f"Error loading text-to-speech models: {e}")
tts_processor = None
tts_model = None
tts_vocoder = None
speaker_embeddings = None
# Modele CNN
class modele_CNN(nn.Module):
def __init__(self, num_classes=7, dropout=0.3):
super(modele_CNN, self).__init__()
self.conv1 = nn.Conv2d(1, 16, 3, padding=1)
self.conv2 = nn.Conv2d(16, 32, 3, padding=1)
self.conv3 = nn.Conv2d(32, 64, 3, padding=1)
self.pool = nn.MaxPool2d(2, 2)
self.fc1 = nn.Linear(64 * 1 * 62, 128)
self.fc2 = nn.Linear(128, num_classes)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = self.pool(F.relu(self.conv3(x)))
x = x.view(x.size(0), -1)
x = self.dropout(F.relu(self.fc1(x)))
x = self.fc2(x)
return x
# Audio processor
class AudioProcessor:
def Mel2Hz(self, mel): return 700 * (np.power(10, mel/2595)-1)
def Hz2Mel(self, freq): return 2595 * np.log10(1+freq/700)
def Hz2Ind(self, freq, fs, Tfft): return (freq*Tfft/fs).astype(int)
def hamming(self, T):
if T <= 1:
return np.ones(T)
return 0.54-0.46*np.cos(2*np.pi*np.arange(T)/(T-1))
def FiltresMel(self, fs, nf=36, Tfft=512, fmin=100, fmax=8000):
Indices = self.Hz2Ind(self.Mel2Hz(np.linspace(self.Hz2Mel(fmin), self.Hz2Mel(min(fmax, fs/2)), nf+2)), fs, Tfft)
filtres = np.zeros((int(Tfft/2), nf))
for i in range(nf): filtres[Indices[i]:Indices[i+2], i] = self.hamming(Indices[i+2]-Indices[i])
return filtres
def spectrogram(self, x, T, p, Tfft):
S = []
for i in range(0, len(x)-T, p): S.append(x[i:i+T]*self.hamming(T))
S = np.fft.fft(S, Tfft)
return np.abs(S), np.angle(S)
def mfcc(self, data, filtres, nc=13, T=256, p=64, Tfft=512):
data = (data[1]-np.mean(data[1]))/np.std(data[1])
amp, ph = self.spectrogram(data, T, p, Tfft)
amp_f = np.log10(np.dot(amp[:, :int(Tfft/2)], filtres)+1)
return idct(amp_f, n=nc, norm='ortho')
def process_audio(self, audio_data, sr, audio_length=32000):
if sr != 16000:
audio_resampled = np.interp(
np.linspace(0, len(audio_data), int(16000 * len(audio_data) / sr)),
np.arange(len(audio_data)),
audio_data
)
sgn = audio_resampled
fs = 16000
else:
sgn = audio_data
fs = sr
sgn = np.array(sgn, dtype=np.float32)
if len(sgn) > audio_length:
sgn = sgn[:audio_length]
else:
sgn = np.pad(sgn, (0, audio_length - len(sgn)), mode='constant')
filtres = self.FiltresMel(fs)
sgn_features = self.mfcc([fs, sgn], filtres)
mfcc_tensor = torch.tensor(sgn_features.T, dtype=torch.float32)
mfcc_tensor = mfcc_tensor.unsqueeze(0).unsqueeze(0)
return mfcc_tensor
# Speech recognition function
def recognize_speech(audio_path):
if speech_recognizer is None or speech_processor is None:
return "Speech recognition model not available"
try:
# Read audio file
audio_data, sr = sf.read(audio_path)
# Resample to 16kHz if needed
if sr != 16000:
audio_data = np.interp(
np.linspace(0, len(audio_data), int(16000 * len(audio_data) / sr)),
np.arange(len(audio_data)),
audio_data
)
sr = 16000
# Process audio
inputs = speech_processor(audio_data, sampling_rate=sr, return_tensors="pt")
inputs = {k: v.to(device) for k, v in inputs.items()}
# Generate transcription
generated_ids = speech_recognizer.generate(**inputs)
transcription = speech_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
return transcription
except Exception as e:
return f"Speech recognition error: {str(e)}"
# Speech synthesis function
def synthesize_speech(text):
if tts_processor is None or tts_model is None or tts_vocoder is None or speaker_embeddings is None:
return None
try:
# Preprocess text
inputs = tts_processor(text=text, return_tensors="pt").to(device)
# Generate speech with speaker embeddings
spectrogram = tts_model.generate_speech(inputs["input_ids"], speaker_embeddings)
# Convert to waveform
with torch.no_grad():
speech = tts_vocoder(spectrogram)
# Convert to numpy array and normalize
speech = speech.cpu().numpy()
speech = speech / np.max(np.abs(speech))
return (16000, speech.squeeze())
except Exception as e:
print(f"Speech synthesis error: {str(e)}")
return None
# Fonction prédiction
def predict_speaker(audio, model, processor):
if audio is None:
return "Aucun audio détecté.", None, None
try:
audio_data, sr = sf.read(audio)
input_tensor = processor.process_audio(audio_data, sr)
device = next(model.parameters()).device
input_tensor = input_tensor.to(device)
with torch.no_grad():
output = model(input_tensor)
print(output)
probabilities = F.softmax(output, dim=1)
confidence, predicted_class = torch.max(probabilities, 1)
speakers = ["George", "Jackson", "Lucas", "Nicolas", "Theo", "Yweweler", "Narimene"]
predicted_speaker = speakers[predicted_class.item()]
result = f"Locuteur reconnu : {predicted_speaker} (confiance : {confidence.item()*100:.2f}%)"
probs_dict = {speakers[i]: float(probs) for i, probs in enumerate(probabilities[0].cpu().numpy())}
# Recognize speech
recognized_text = recognize_speech(audio)
return result, probs_dict, recognized_text,predicted_speaker
except Exception as e:
return f"Erreur : {str(e)}", None, None
# Charger modèle
def load_model(model_id="nareauow/my_speech_recognition", model_filename="model_3.pth"):
try:
model_path = hf_hub_download(repo_id=model_id, filename=model_filename)
model = modele_CNN(num_classes=7, dropout=0.)
model.load_state_dict(torch.load(model_path, map_location=device))
model.to(device)
model.eval()
print("Modèle chargé avec succès !")
return model
except Exception as e:
print(f"Erreur de chargement: {e}")
return None
# Gradio Interface
def create_interface():
processor = AudioProcessor()
with gr.Blocks(title="Reconnaissance de Locuteur") as interface:
gr.Markdown("# 🗣️ Reconnaissance de Locuteur")
gr.Markdown("Enregistrez votre voix pendant 2 secondes pour identifier qui parle.")
with gr.Row():
with gr.Column():
model_selector = gr.Dropdown(
choices=["model_1.pth", "model_2.pth", "model_3.pth"],
value="model_3.pth",
label="Choisissez le modèle"
)
audio_input = gr.Audio(sources=["microphone"], type="filepath", label="🎙️ Parlez ici")
record_btn = gr.Button("Reconnaître")
with gr.Column():
result_text = gr.Textbox(label="Résultat")
plot_output = gr.Plot(label="Confiance par locuteur")
recognized_text = gr.Textbox(label="Texte reconnu")
audio_output = gr.Audio(label="Synthèse vocale", type="numpy")
def recognize(audio, selected_model):
model = load_model(model_filename=selected_model)
res, probs, text,locuteur = predict_speaker(audio, model, processor)
# Generate plot
fig = None
if probs:
fig, ax = plt.subplots()
ax.bar(probs.keys(), probs.values(), color='skyblue')
ax.set_ylim([0, 1])
ax.set_ylabel("Confiance")
ax.set_xlabel("Locuteurs")
plt.xticks(rotation=45)
# Generate speech synthesis if text was recognized
synth_audio = None
if text and "error" not in text.lower():
synth_text = f"{locuteur} said : {text}"
synth_audio = synthesize_speech(synth_text)
return res, fig, text, synth_audio
record_btn.click(fn=recognize,
inputs=[audio_input, model_selector],
outputs=[result_text, plot_output, recognized_text, audio_output])
gr.Markdown("""### Comment utiliser ?
- Choisissez le modèle.
- Cliquez sur 🎙️ pour enregistrer votre voix.
- Cliquez sur **Reconnaître** pour obtenir la prédiction.
""")
return interface
# Lancer
if __name__ == "__main__":
app = create_interface()
app.launch(share=True) |