themissingCRAM
ui and clear button
97f927e
import gradio as gr
from huggingface_hub import InferenceClient
import os
from smolagents import (
tool,
CodeAgent,
TransformersModel,
GradioUI,
MultiStepAgent,
stream_to_gradio, HfApiModel,
)
from sqlalchemy import (
create_engine,
MetaData,
Table,
Column,
String,
Integer,
Float,
insert,
inspect,
text,
select,
Engine,
)
import spaces
from dotenv import load_dotenv
load_dotenv()
#sample questions
# What is the average each customer paid?
# Create a sql statement and invoke your sql_engine tool
@spaces.GPU
def dummy():
pass
@tool
def sql_engine_tool(query: str) -> str:
"""
Allows you to perform SQL queries on the table. Returns a string representation of the result.
The table is named 'receipts'. Its description is as follows:
Columns:
- receipt_id: INTEGER
- customer_name: VARCHAR(16)
- price: FLOAT
- tip: FLOAT
Args:
query: The query to perform. This should be correct SQL.
"""
output = ""
with engine.begin() as con:
rows = con.execute(text(query))
for row in rows:
output += "\n" + str(row)
return output
def init_db(engine):
metadata_obj = MetaData()
def insert_rows_into_table(rows, table, engine=engine):
for row in rows:
stmt = insert(table).values(**row)
with engine.begin() as connection:
connection.execute(stmt)
table_name = "receipts"
receipts = Table(
table_name,
metadata_obj,
Column("receipt_id", Integer, primary_key=True),
Column("customer_name", String(16), primary_key=True),
Column("price", Float),
Column("tip", Float),
)
metadata_obj.create_all(engine)
rows = [
{"receipt_id": 1, "customer_name": "Alan Payne", "price": 12.06, "tip": 1.20},
{"receipt_id": 2, "customer_name": "Alex Mason", "price": 23.86, "tip": 0.24},
{
"receipt_id": 3,
"customer_name": "Woodrow Wilson",
"price": 53.43,
"tip": 5.43,
},
{
"receipt_id": 4,
"customer_name": "Margaret James",
"price": 21.11,
"tip": 1.00,
},
]
insert_rows_into_table(rows, receipts)
table_name = "waiters"
waiters = Table(
table_name,
metadata_obj,
Column("receipt_id", Integer, primary_key=True),
Column("waiter_name", String(16), primary_key=True),
)
metadata_obj.create_all(engine)
rows = [
{"receipt_id": 1, "waiter_name": "Corey Johnson"},
{"receipt_id": 2, "waiter_name": "Michael Watts"},
{"receipt_id": 3, "waiter_name": "Michael Watts"},
{"receipt_id": 4, "waiter_name": "Margaret James"},
]
insert_rows_into_table(rows, waiters)
return engine
if __name__ == "__main__":
engine = create_engine("sqlite:///:localhost:")
engine = init_db(engine)
#Not working at the moment
# model = TransformersModel(
# # model_id="Qwen/Qwen2.5-Coder-32B-Instruct",
# device_map="cuda",
# model_id="meta-llama/Llama-3.2-3B-Instruct"
# )
model = HfApiModel(
model_id="meta-llama/Llama-3.2-3B-Instruct",
token=os.getenv("my_first_agents_hf_tokens")
)
agent = CodeAgent(
tools=[sql_engine_tool],
model=model,
max_steps=10,
verbosity_level=1,
)
def enter_message(new_message, conversation_history):
conversation_history.append(gr.ChatMessage(role="user", content=new_message))
# yield "", conversation_history
for msg in stream_to_gradio(agent, new_message):
conversation_history.append(msg)
yield "", conversation_history
def clear_message(chat_history: list):
agent.memory.reset()
return chat_history.clear(), ""
with gr.Blocks() as b:
gr.Markdown('''# Demo text to sql on paying customers' receipts
a self correcting text to sql ai agent using smolagents, gradio, HF Spaces, sqlalchemy improved from a smolagents guide
''')
chatbot = gr.Chatbot(type="messages", height=2000)
message_box = gr.Textbox(lines=1, label="chat message (with default sample question)", value="What is the average each customer paid?")
with gr.Row():
stop_generating_button = gr.Button("stop generating")
clear_messages_button = gr.ClearButton([message_box, chatbot])
enter_button = gr.Button("enter")
reply_button_click_event = enter_button.click(enter_message, [message_box, chatbot], [message_box, chatbot])
message_submit = message_box.submit(enter_message, [message_box, chatbot], [message_box, chatbot])
stop_generating_button.click(fn= stop_gen,cancels=[reply_button_click_event,message_submit])
clear_messages_button.click(clear_message,outputs=[chatbot,message_box])
b.launch()