|
import gradio as gr |
|
from huggingface_hub import InferenceClient |
|
import os |
|
from smolagents import ( |
|
tool, |
|
CodeAgent, |
|
TransformersModel, |
|
GradioUI, |
|
MultiStepAgent, |
|
stream_to_gradio, HfApiModel, |
|
) |
|
from sqlalchemy import ( |
|
create_engine, |
|
MetaData, |
|
Table, |
|
Column, |
|
String, |
|
Integer, |
|
Float, |
|
insert, |
|
inspect, |
|
text, |
|
select, |
|
Engine, |
|
) |
|
import spaces |
|
|
|
from dotenv import load_dotenv |
|
|
|
load_dotenv() |
|
|
|
|
|
|
|
|
|
|
|
@spaces.GPU |
|
def dummy(): |
|
pass |
|
|
|
|
|
@tool |
|
def sql_engine_tool(query: str) -> str: |
|
""" |
|
Allows you to perform SQL queries on the table. Returns a string representation of the result. |
|
The table is named 'receipts'. Its description is as follows: |
|
Columns: |
|
- receipt_id: INTEGER |
|
- customer_name: VARCHAR(16) |
|
- price: FLOAT |
|
- tip: FLOAT |
|
|
|
Args: |
|
query: The query to perform. This should be correct SQL. |
|
""" |
|
output = "" |
|
with engine.begin() as con: |
|
rows = con.execute(text(query)) |
|
for row in rows: |
|
output += "\n" + str(row) |
|
return output |
|
|
|
|
|
def init_db(engine): |
|
metadata_obj = MetaData() |
|
|
|
def insert_rows_into_table(rows, table, engine=engine): |
|
for row in rows: |
|
stmt = insert(table).values(**row) |
|
with engine.begin() as connection: |
|
connection.execute(stmt) |
|
|
|
table_name = "receipts" |
|
receipts = Table( |
|
table_name, |
|
metadata_obj, |
|
Column("receipt_id", Integer, primary_key=True), |
|
Column("customer_name", String(16), primary_key=True), |
|
Column("price", Float), |
|
Column("tip", Float), |
|
) |
|
metadata_obj.create_all(engine) |
|
|
|
rows = [ |
|
{"receipt_id": 1, "customer_name": "Alan Payne", "price": 12.06, "tip": 1.20}, |
|
{"receipt_id": 2, "customer_name": "Alex Mason", "price": 23.86, "tip": 0.24}, |
|
{ |
|
"receipt_id": 3, |
|
"customer_name": "Woodrow Wilson", |
|
"price": 53.43, |
|
"tip": 5.43, |
|
}, |
|
{ |
|
"receipt_id": 4, |
|
"customer_name": "Margaret James", |
|
"price": 21.11, |
|
"tip": 1.00, |
|
}, |
|
] |
|
insert_rows_into_table(rows, receipts) |
|
|
|
table_name = "waiters" |
|
waiters = Table( |
|
table_name, |
|
metadata_obj, |
|
Column("receipt_id", Integer, primary_key=True), |
|
Column("waiter_name", String(16), primary_key=True), |
|
) |
|
metadata_obj.create_all(engine) |
|
|
|
rows = [ |
|
{"receipt_id": 1, "waiter_name": "Corey Johnson"}, |
|
{"receipt_id": 2, "waiter_name": "Michael Watts"}, |
|
{"receipt_id": 3, "waiter_name": "Michael Watts"}, |
|
{"receipt_id": 4, "waiter_name": "Margaret James"}, |
|
] |
|
insert_rows_into_table(rows, waiters) |
|
return engine |
|
|
|
|
|
if __name__ == "__main__": |
|
engine = create_engine("sqlite:///:localhost:") |
|
engine = init_db(engine) |
|
|
|
|
|
|
|
|
|
|
|
|
|
model = HfApiModel( |
|
model_id="meta-llama/Llama-3.2-3B-Instruct", |
|
token=os.getenv("my_first_agents_hf_tokens") |
|
) |
|
|
|
agent = CodeAgent( |
|
tools=[sql_engine_tool], |
|
model=model, |
|
max_steps=10, |
|
verbosity_level=1, |
|
) |
|
|
|
def enter_message(new_message, conversation_history): |
|
conversation_history.append(gr.ChatMessage(role="user", content=new_message)) |
|
|
|
for msg in stream_to_gradio(agent, new_message): |
|
conversation_history.append(msg) |
|
yield "", conversation_history |
|
|
|
|
|
def clear_message(chat_history: list): |
|
agent.memory.reset() |
|
return chat_history.clear(), "" |
|
|
|
with gr.Blocks() as b: |
|
gr.Markdown('''# Demo text to sql on paying customers' receipts |
|
a self correcting text to sql ai agent using smolagents, gradio, HF Spaces, sqlalchemy improved from a smolagents guide |
|
''') |
|
chatbot = gr.Chatbot(type="messages", height=2000) |
|
message_box = gr.Textbox(lines=1, label="chat message (with default sample question)", value="What is the average each customer paid?") |
|
with gr.Row(): |
|
stop_generating_button = gr.Button("stop generating") |
|
clear_messages_button = gr.ClearButton([message_box, chatbot]) |
|
enter_button = gr.Button("enter") |
|
reply_button_click_event = enter_button.click(enter_message, [message_box, chatbot], [message_box, chatbot]) |
|
message_submit = message_box.submit(enter_message, [message_box, chatbot], [message_box, chatbot]) |
|
stop_generating_button.click(fn= stop_gen,cancels=[reply_button_click_event,message_submit]) |
|
clear_messages_button.click(clear_message,outputs=[chatbot,message_box]) |
|
|
|
b.launch() |