import gradio as gr from huggingface_hub import InferenceClient import os from smolagents import ( tool, CodeAgent, TransformersModel, GradioUI, MultiStepAgent, stream_to_gradio, HfApiModel, ) from sqlalchemy import ( create_engine, MetaData, Table, Column, String, Integer, Float, insert, inspect, text, select, Engine, ) import spaces from dotenv import load_dotenv load_dotenv() #sample questions # What is the average each customer paid? # Create a sql statement and invoke your sql_engine tool @spaces.GPU def dummy(): pass @tool def sql_engine_tool(query: str) -> str: """ Allows you to perform SQL queries on the table. Returns a string representation of the result. The table is named 'receipts'. Its description is as follows: Columns: - receipt_id: INTEGER - customer_name: VARCHAR(16) - price: FLOAT - tip: FLOAT Args: query: The query to perform. This should be correct SQL. """ output = "" with engine.begin() as con: rows = con.execute(text(query)) for row in rows: output += "\n" + str(row) return output def init_db(engine): metadata_obj = MetaData() def insert_rows_into_table(rows, table, engine=engine): for row in rows: stmt = insert(table).values(**row) with engine.begin() as connection: connection.execute(stmt) table_name = "receipts" receipts = Table( table_name, metadata_obj, Column("receipt_id", Integer, primary_key=True), Column("customer_name", String(16), primary_key=True), Column("price", Float), Column("tip", Float), ) metadata_obj.create_all(engine) rows = [ {"receipt_id": 1, "customer_name": "Alan Payne", "price": 12.06, "tip": 1.20}, {"receipt_id": 2, "customer_name": "Alex Mason", "price": 23.86, "tip": 0.24}, { "receipt_id": 3, "customer_name": "Woodrow Wilson", "price": 53.43, "tip": 5.43, }, { "receipt_id": 4, "customer_name": "Margaret James", "price": 21.11, "tip": 1.00, }, ] insert_rows_into_table(rows, receipts) table_name = "waiters" waiters = Table( table_name, metadata_obj, Column("receipt_id", Integer, primary_key=True), Column("waiter_name", String(16), primary_key=True), ) metadata_obj.create_all(engine) rows = [ {"receipt_id": 1, "waiter_name": "Corey Johnson"}, {"receipt_id": 2, "waiter_name": "Michael Watts"}, {"receipt_id": 3, "waiter_name": "Michael Watts"}, {"receipt_id": 4, "waiter_name": "Margaret James"}, ] insert_rows_into_table(rows, waiters) return engine if __name__ == "__main__": engine = create_engine("sqlite:///:localhost:") engine = init_db(engine) #Not working at the moment # model = TransformersModel( # # model_id="Qwen/Qwen2.5-Coder-32B-Instruct", # device_map="cuda", # model_id="meta-llama/Llama-3.2-3B-Instruct" # ) model = HfApiModel( model_id="meta-llama/Llama-3.2-3B-Instruct", token=os.getenv("my_first_agents_hf_tokens") ) agent = CodeAgent( tools=[sql_engine_tool], model=model, max_steps=10, verbosity_level=1, ) def enter_message(new_message, conversation_history): conversation_history.append(gr.ChatMessage(role="user", content=new_message)) # yield "", conversation_history for msg in stream_to_gradio(agent, new_message): conversation_history.append(msg) yield "", conversation_history def clear_message(chat_history: list): agent.memory.reset() return chat_history.clear(), "" with gr.Blocks() as b: gr.Markdown('''# Demo text to sql on paying customers' receipts a self correcting text to sql ai agent using smolagents, gradio, HF Spaces, sqlalchemy improved from a smolagents guide ''') chatbot = gr.Chatbot(type="messages", height=2000) message_box = gr.Textbox(lines=1, label="chat message (with default sample question)", value="What is the average each customer paid?") with gr.Row(): stop_generating_button = gr.Button("stop generating") clear_messages_button = gr.ClearButton([message_box, chatbot]) enter_button = gr.Button("enter") reply_button_click_event = enter_button.click(enter_message, [message_box, chatbot], [message_box, chatbot]) message_submit = message_box.submit(enter_message, [message_box, chatbot], [message_box, chatbot]) stop_generating_button.click(fn= stop_gen,cancels=[reply_button_click_event,message_submit]) clear_messages_button.click(clear_message,outputs=[chatbot,message_box]) b.launch()