Spaces:
Sleeping
Sleeping
import os | |
from fastapi import FastAPI | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from peft import PeftModel | |
import torch | |
from pydantic import BaseModel | |
# Set writable cache directory inside the container | |
os.environ['SENTENCE_TRANSFORMERS_HOME'] = '/app/hf_home' | |
os.environ['TRANSFORMERS_CACHE'] = '/app/hf_home' | |
# Ensure the directory exists | |
os.makedirs(os.environ['TRANSFORMERS_CACHE'], exist_ok=True) | |
# Define base model and adapter model | |
base_model_name = "facebook/opt-2.7b" | |
adapter_name = "mynuddin/chatbot" # Adapter model path or name | |
# Load base model and tokenizer | |
tokenizer = AutoTokenizer.from_pretrained(base_model_name) | |
base_model = AutoModelForCausalLM.from_pretrained(base_model_name, torch_dtype=torch.float16) | |
# Load PEFT adapter | |
model = PeftModel.from_pretrained(base_model, adapter_name) | |
model = model.to("cuda" if torch.cuda.is_available() else "cpu") # Use GPU if available | |
model.eval() | |
app = FastAPI() | |
# Define Pydantic model for input | |
class PromptInput(BaseModel): | |
prompt: str | |
def generate_text(input: PromptInput): | |
prompt = input.prompt # Access prompt from the request body | |
# Format the prompt with specific style for your fine-tuned model | |
input_text = f"### Prompt: {prompt}\n### Completion:" | |
inputs = tokenizer(input_text, return_tensors="pt").to("cuda" if torch.cuda.is_available() else "cpu") | |
# Generate the output | |
with torch.no_grad(): | |
output = model.generate(**inputs, max_length=128, do_sample=False, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id) | |
# Decode the output and remove special tokens | |
generated_text = tokenizer.decode(output[0], skip_special_tokens=True) | |
# Extract the query part from the generated output | |
if "### Completion:" in generated_text: | |
query_output = generated_text.split("### Completion:")[1].strip() | |
else: | |
query_output = generated_text.replace(input_text, "").strip() # Fallback if the structure is not as expected | |
return {"generated_query": query_output} | |