Spaces:
Sleeping
Sleeping
import os | |
from fastapi import FastAPI | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from peft import PeftModel | |
import torch | |
# Set writable cache directory inside the container | |
os.environ['SENTENCE_TRANSFORMERS_HOME'] = '/app/hf_home' | |
os.environ['TRANSFORMERS_CACHE'] = '/app/hf_home' | |
# Ensure the directory exists | |
os.makedirs(os.environ['TRANSFORMERS_CACHE'], exist_ok=True) | |
# Define base model and adapter model | |
base_model_name = "facebook/opt-2.7b" | |
adapter_name = "mynuddin/chatbot" | |
# Load base model and tokenizer | |
tokenizer = AutoTokenizer.from_pretrained(base_model_name) | |
base_model = AutoModelForCausalLM.from_pretrained(base_model_name, torch_dtype=torch.float16) | |
# Load PEFT adapter | |
model = PeftModel.from_pretrained(base_model, adapter_name) | |
model = model.to("cpu") # Change to "cuda" if running on GPU | |
model.eval() | |
app = FastAPI() | |
def generate_text(prompt: str): | |
inputs = tokenizer(prompt, return_tensors="pt") | |
with torch.no_grad(): | |
output = model.generate(**inputs, max_length=128) | |
generated_text = tokenizer.decode(output[0], skip_special_tokens=True) | |
return {"generated_query": generated_text} |