VoiceStar / models /voice_star.py
mrfakename's picture
Upload 51 files
82bc972 verified
import random, os, copy
from typing import Dict, Iterator, List, Tuple, Union
import logging
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchmetrics.classification import MulticlassAccuracy
import torch.distributed as dist
from .modules.utils import make_pad_mask, generate_partial_autoregressive_mask
from .modules.embedding import SinePositionalEmbedding, TokenEmbedding, SinePositionalEmbedding_progress
from .modules.transformer import (
AdaptiveLayerNorm,
LayerNorm,
TransformerDecoderLayer,
TransformerDecoder,
TransformerEncoder,
TransformerEncoderLayer,
)
def top_k_top_p_filtering(
logits, top_k=0, top_p=1.0, min_p=1.0, filter_value=-float("Inf"), min_tokens_to_keep=1
):
"""Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
Args:
logits: logits distribution shape (batch size, vocabulary size)
if top_k > 0: keep only top k tokens with highest probability (top-k filtering).
if top_p < 1.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).
Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
Make sure we keep at least min_tokens_to_keep per batch example in the output
From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317
"""
if min_p < 1.0:
probs = F.softmax(logits, dim=-1)
indices_to_remove = probs < min_p
if not torch.any(indices_to_remove.sum(-1) == logits.size(-1)):
logits[indices_to_remove] = filter_value
top_k = 0
top_p = 1.0
# else will use other types of sampling, or no filtering
# If top_k is a single integer
if isinstance(top_k, int) and top_k > 0:
# Safety check to ensure we don't ask for more than available
top_k = min(max(top_k, min_tokens_to_keep), logits.size(-1))
# Remove all tokens with a probability less than the last token of the top-k
threshold = torch.topk(logits, top_k, dim=-1)[0][..., -1, None]
indices_to_remove = logits < threshold
logits[indices_to_remove] = filter_value
# If top_k is a list, assume it has the same length as M
elif isinstance(top_k, list):
# Ensure the length matches the first dimension
assert len(top_k) == logits.size(0), \
f"top_k list length ({len(top_k)}) must match logits.size(0) ({logits.size(0)})"
for i in range(logits.size(0)):
k_i = top_k[i]
if k_i > 0:
# Safety check
k_i = min(max(k_i, min_tokens_to_keep), logits.size(-1))
row_threshold = torch.topk(logits[i], k_i, dim=-1)[0][-1]
indices_to_remove_i = logits[i] < row_threshold
logits[i, indices_to_remove_i] = filter_value
if top_p < 1.0:
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
cumulative_probs = torch.cumsum(
F.softmax(sorted_logits, dim=-1), dim=-1
)
# Remove tokens with cumulative probability above the threshold (token with 0 are kept)
sorted_indices_to_remove = cumulative_probs > top_p
if min_tokens_to_keep > 1:
# Keep at least min_tokens_to_keep (set to min_tokens_to_keep-1 because we add the first one below)
sorted_indices_to_remove[..., :min_tokens_to_keep] = 0
# Shift the indices to the right to keep also the first token above the threshold
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[
..., :-1
].clone()
sorted_indices_to_remove[..., 0] = 0
return logits
def topk_sampling(logits, top_k=10, top_p=1.0, min_p=1.0, temperature=1.0):
# temperature: (`optional`) float
# The value used to module the next token probabilities. Must be strictly positive. Default to 1.0.
# top_k: (`optional`) int
# The number of highest probability vocabulary tokens to keep for top-k-filtering. Between 1 and infinity. Default to 50.
# top_p: (`optional`) float
# The cumulative probability of parameter highest probability vocabulary tokens to keep for nucleus sampling. Must be between 0 and 1. Default to 1.
# Temperature (higher temperature => more likely to sample low probability tokens)
if temperature != 1.0:
logits = logits / temperature
# Top-p/top-k filtering
logits = top_k_top_p_filtering(logits, top_k=top_k, top_p=top_p, min_p=min_p)
# Sample
token = torch.multinomial(F.softmax(logits, dim=-1), num_samples=1)
return token
class VoiceStar(nn.Module):
def __init__(self, args):
super().__init__()
self.args = args
assert self.args.enc_dec ^ self.args.dec, f"self.args.enc_dec: {self.args.enc_dec}, self.args.dec: {self.args.dec}"
if not getattr(self.args, "special_first", False):
self.args.special_first = 0
if not getattr(self.args, "n_special", False):
self.args.n_special = 3
self.args.eos = getattr(self.args, "eos", -1)
self.eog = nn.Parameter(torch.full((self.args.n_codebooks, 1), self.args.eog, dtype=torch.long), requires_grad=False) # [K 1]
if self.args.eos > 0:
assert self.args.eos != self.args.audio_pad_token and self.args.eos != self.args.empty_token, self.args.eos
self.eos = nn.Parameter(torch.full((self.args.n_codebooks, 1), self.args.eos, dtype=torch.long), requires_grad=False) # [K 1]
if type(self.args.audio_vocab_size) == str:
self.args.audio_vocab_size = eval(self.args.audio_vocab_size)
if type(self.args.audio_vocab_size) == list: # otherwise they are all lists
assert self.args.special_first
self.n_text_tokens = self.args.text_vocab_size + 1
assert self.args.text_pad_token == self.args.text_vocab_size, f"self.args.text_vocab_size: {self.args.text_vocab_size}, self.args.text_pad_token: {self.args.text_pad_token}"
if self.args.special_first and type(self.args.audio_vocab_size) == list:
self.n_audio_tokens = [tok + self.args.n_special for tok in self.args.audio_vocab_size] # special tokens: empty token, EOG token, audio pad token
assert self.args.empty_token == 0, self.args.empty_token
assert self.args.eog == 1, self.args.eog
assert self.args.audio_pad_token == 2, self.args.audio_pad_token
else:
self.n_audio_tokens = [self.args.audio_vocab_size + self.args.n_special] * self.args.n_codebooks # special tokens: empty token, EOG token, audio pad token
assert self.args.audio_vocab_size == self.args.empty_token, self.args.empty_token
assert self.args.eog == self.args.audio_vocab_size + 1, self.args.eog
assert self.args.audio_pad_token == self.args.audio_vocab_size + 2, self.args.audio_pad_token
self.text_embedding = TokenEmbedding(
dim_model=self.args.d_model,
vocab_size=self.n_text_tokens,
dropout=self.args.text_embedding_dropout
)
self.audio_embedding = nn.ModuleList(
[
TokenEmbedding(
dim_model=self.args.audio_embedding_dim,
vocab_size=self.n_audio_tokens[k],
dropout=self.args.audio_embedding_dropout
) for k in range(self.args.n_codebooks)
]
)
rope_base = getattr(self.args, "rope_base", None)
use_sinusoidal = getattr(self.args, "use_sinusoidal", False)
use_sinusoidal_progress = getattr(self.args, "use_sinusoidal_progress", False)
logging.info(f"rope_base: {rope_base}, use_sinusoidal: {use_sinusoidal}")
if use_sinusoidal:
self.text_positional_embedding = SinePositionalEmbedding(
self.args.d_model,
dropout=self.args.text_positional_embedding_dropout,
scale=False,
alpha=True, # learnable scaler, scale the volume of positional embedding
)
self.audio_positional_embedding = SinePositionalEmbedding(
self.args.d_model,
dropout=self.args.audio_positional_embedding_dropout,
scale=False,
alpha=True, # learnable scaler, scale the volume of positional embedding
)
elif use_sinusoidal_progress:
self.text_positional_embedding = SinePositionalEmbedding_progress(
self.args.d_model,
dropout=self.args.text_positional_embedding_dropout,
scale=False,
alpha=True, # learnable scaler, scale the volume of positional embedding
args = self.args
)
self.audio_positional_embedding = SinePositionalEmbedding_progress(
self.args.d_model,
dropout=self.args.audio_positional_embedding_dropout,
scale=False,
alpha=True, # learnable scaler, scale the volume of positional embedding
args = self.args
)
else:
class NoOp:
def __init__(self):
pass
def __call__(self, *args, **kwargs):
return args[0]
self.text_positional_embedding = NoOp()
self.audio_positional_embedding = NoOp()
if self.args.enc_dec:
enc_layer = TransformerEncoderLayer(
d_model=self.args.d_model,
nhead=self.args.nhead,
dim_feedforward=self.args.d_model*4,
dropout=self.args.trm_dropout,
batch_first=True,
norm_first=True,
layer_norm_cls=LayerNorm
) # use the pre-norm arch
self.encoder = TransformerEncoder(
encoder_layer=enc_layer,
num_layers=self.args.num_encoder_layers,
norm=LayerNorm(self.args.d_model),
rope_base = self.args.rope_base,
d_model = self.args.d_model,
nhead = self.args.nhead,
args = self.args
) # use the pre-norm arch
dec_layer = TransformerDecoderLayer(
d_model=self.args.d_model,
nhead=self.args.nhead,
dim_feedforward=self.args.d_model*4,
dropout=self.args.trm_dropout,
batch_first=True,
norm_first=True,
layer_norm_cls=LayerNorm
)
self.decoder = TransformerDecoder(
decoder_layer=dec_layer,
num_layers=self.args.num_decoder_layers,
norm=LayerNorm(self.args.d_model),
rope_base = self.args.rope_base,
d_model = self.args.d_model,
nhead = self.args.nhead,
args = self.args
) # NOTE: this one I use torch.nn native implementation, as it's not implemented in .modules
else:
dec_layer = TransformerEncoderLayer(
self.args.d_model,
self.args.nhead,
dim_feedforward=self.args.d_model * 4,
dropout=self.args.trm_dropout,
batch_first=True,
norm_first=True,
layer_norm_cls=LayerNorm
)
self.decoder = TransformerEncoder(
dec_layer,
num_layers=self.args.num_decoder_layers,
norm=LayerNorm(self.args.d_model),
)
if type(self.args.audio_vocab_size) == int:
self.predict_layer = nn.ModuleList(
[
nn.Sequential(nn.Linear(self.args.d_model, self.args.audio_vocab_size//2), nn.GELU(), nn.Linear(self.args.audio_vocab_size//2, self.n_audio_tokens[k])) for k in range(self.args.n_codebooks)
]
)
else:
self.predict_layer = nn.ModuleList(
[
nn.Sequential(nn.Linear(self.args.d_model, self.args.d_model//2), nn.GELU(), nn.Linear(self.args.d_model//2, self.n_audio_tokens[k])) for k in range(self.args.n_codebooks)
]
)
self.accuracy_metrics = nn.ModuleList(
[MulticlassAccuracy(
self.n_audio_tokens[k],
top_k=10,
average="micro",
multidim_average="global",
ignore_index=None,
) for k in range(self.args.n_codebooks)]
)
if self.args.eog_weight != 1:
raise NotImplementedError("now have different vocab_size for different codebooks, therefore currently don't support eog_weight")
self.class_weight = nn.Parameter(torch.ones(self.n_audio_tokens), requires_grad=False)
self.class_weight.data[self.args.eog] = self.args.eog_weight
def dec_forward(
self,
x_input,
x_lens,
x_attention_mask,
x_padding_mask,
y_input,
new_y_lens,
y_attention_mask,
y_padding_mask,
need_weights=False,
past=None,
last_3_tokens=False
):
x_attn_mask = F.pad(
x_attention_mask,
(0, new_y_lens.max()),
value=True,
) # x attn to all x, doesn't attn to any y, this follow figure 3 of the valle paper
y_attn_mask = F.pad(
y_attention_mask,
(x_lens.max(), 0), # y is padded at the front
value=False,
) # y attn to all x, for y itself use lower triangle mask to ensure autoregressive
xy_attn_mask = torch.concat([x_attn_mask, y_attn_mask], dim=0)
# merge key padding and attention masks
bsz, src_len = x_input.shape[0], x_lens.max() + new_y_lens.max()
xy_padding_mask = torch.concat([x_padding_mask, y_padding_mask], dim=1)
_xy_padding_mask = (
xy_padding_mask.view(bsz, 1, 1, src_len)
.expand(-1, self.args.nhead, -1, -1)
.reshape(bsz * self.args.nhead, 1, src_len)
)
xy_attn_mask = xy_attn_mask.logical_or(_xy_padding_mask)
new_attn_mask = torch.zeros_like(xy_attn_mask)
new_attn_mask.masked_fill_(xy_attn_mask, float("-inf"))
xy_attn_mask = new_attn_mask
xy_input = torch.cat([x_input, y_input], dim=1)
if need_weights:
raise NotImplementedError("not implemented yet")
out, layer_attn_weights = self.decoder((xy_input, None), mask=xy_attn_mask, need_weights=True)
return layer_attn_weights
if past == None: # do not use kvcache
out, _ = self.decoder((xy_input, None), mask=xy_attn_mask)
return out[:, x_lens.max():], None
else: # use kvcache
if past.ndim > 3: # uses kvcache, only need to pass the last tokens, this doesn't work with multi-span speech editing yet
if last_3_tokens:
xy_input = xy_input[:, -3:]
xy_attn_mask = xy_attn_mask[:, -3:]
else:
xy_input = xy_input[:, -1:]
xy_attn_mask = xy_attn_mask[:, -1:]
out, present = self.decoder((xy_input, None), mask=xy_attn_mask, past=past)
if isinstance(out, tuple): # get rid of stage_embedding
out = out[0]
if out.shape[1] > x_lens.max(): # the first pass, not kvcache yet
return out[:, x_lens.max():], present
else: # used kvcache
return out, present
def enc_dec_forward(
self,
xa,
x_attention_mask,
x_padding_mask,
y_input,
new_y_lens,
y_attention_mask,
y_padding_mask,
tgt_y_lens=None,
need_weights=False,
past=None,
last_3_tokens=False
):
assert not need_weights
if past != None and past.ndim > 3:
y_input = y_input[:, -1:]
y_attention_mask = y_attention_mask[-1:]
yhat, present = self.decoder(tgt=y_input, memory=xa, tgt_mask=y_attention_mask, tgt_key_padding_mask=y_padding_mask, memory_key_padding_mask=x_padding_mask, query_lens=tgt_y_lens, past=past)
return yhat, present
def forward(self, batch, calc_loss = False):
"""
Args:
x:
A 2-D tensor of shape (N, S).
x_lens:
A 1-D tensor of shape (N,). It contains the number of tokens in `x`
before padding.
y:
A 3-D tensor of shape (N, K, T).
where K is the number of codebooks
y_lens:
A 1-D tensor of shape (N,). It contains the number of tokens in `x`
before padding.
"""
x, x_lens, y, y_lens = batch["x"], batch["x_lens"], batch["y"], batch["y_lens"]
if len(x) == 0:
return None
x = x[:, :x_lens.max()] # this deal with gradient accumulation, where x_lens.max() might not be longer than the length of the current slice of x
y = y[...,:y_lens.max()]
assert x.ndim == 2, x.shape
assert x_lens.ndim == 1, x_lens.shape
assert y.ndim == 3 and y.shape[1] == self.args.n_codebooks, y.shape
assert y_lens.ndim == 1, y_lens.shape
x_padding_mask = make_pad_mask(x_lens).to(x.device)
x_attention_mask = torch.triu(torch.ones(x.shape[1], x.shape[1]), diagonal=1).bool().to(x_padding_mask.device)
x_input = self.text_embedding(x)
x_input = self.text_positional_embedding(x_input, x_lens)
y_with_eos = [torch.cat([item[:, :y_lens[i]], self.eos], dim=-1) for i, item in enumerate(y)]
targets = y_with_eos
# apply delayed stacking on y
shifted_y = []
patterns = []
new_y_lens = []
if getattr(self, "empty_tokens", None) == None:
self.empty_tokens = torch.full((self.args.n_codebooks, self.args.n_codebooks), self.args.empty_token, dtype=torch.long).to(y.device) # [K, K]
for i in range(len(y)):
tmp = torch.cat([y_with_eos[i], self.empty_tokens], dim=-1) # [K, T+n_codebooks]
for ii in range(self.args.n_codebooks):
tmp[ii] = torch.roll(tmp[ii], shifts=ii+1, dims=0)
shifted_y.append(tmp.transpose(1,0)) # [K, T+n_codebooks] -> [T+n_codebooks, K]
new_y_lens.append(y_with_eos[i].shape[1] + self.empty_tokens.shape[1])
new_y_lens = torch.LongTensor(new_y_lens).to(y.device)
cated_y = torch.nn.utils.rnn.pad_sequence(shifted_y, batch_first=False, padding_value=self.args.audio_pad_token)
assert cated_y.shape == torch.Size([max(new_y_lens), len(y), self.args.n_codebooks]), cated_y.shape
cated_y = cated_y.permute(2,0,1) # [T,B,K]->[K,T,B]
stacked_embedded_y = torch.stack([self.audio_embedding[k](cated_y[k]) for k in range(self.args.n_codebooks)], dim=0) # [K, T, B, D]
assert stacked_embedded_y.shape[0] == self.args.n_codebooks and stacked_embedded_y.shape[2] == len(y) and stacked_embedded_y.shape[-1] == self.args.d_model, stacked_embedded_y.shape
embedded_y = stacked_embedded_y.sum(dim=0) # [K,T,B,D]->[T,B,D]
embedded_y = embedded_y.transpose(1,0) # [T,B,D]->[B,T,D]
assert embedded_y.shape[1:] == torch.Size([max(new_y_lens), self.args.d_model]), embedded_y.shape
y_input = self.audio_positional_embedding(embedded_y, new_y_lens)
y_padding_mask = make_pad_mask(new_y_lens).to(y.device)
y_attention_mask = torch.triu(torch.ones(y_input.shape[1], y_input.shape[1]), diagonal=1).bool().to(y_padding_mask.device)
if self.args.dec:
y_out = self.dec_forward(
x_input,
x_lens,
x_attention_mask,
x_padding_mask,
y_input,
new_y_lens,
y_attention_mask,
y_padding_mask
)
else:
xa = self.encoder(src=x_input, src_key_padding_mask=x_padding_mask)
y_out = self.enc_dec_forward(
xa,
x_attention_mask,
x_padding_mask,
y_input,
new_y_lens,
y_attention_mask,
y_padding_mask
)
y_out = y_out[0] # no kv-caching during training
assert y_out.shape == y_input.shape, f"y_out.shape: {y_out.shape}, y_input.shape: {y_input.shape}" # [B S D]
logits = torch.stack([self.predict_layer[i](y_out) for i in range(self.args.n_codebooks)], dim=1) # [B K S card]
assert logits.shape[1] == self.args.n_codebooks and logits.shape[3] == self.n_audio_tokens[0], logits.shape
logits_use = [logit[:, :new_y_lens[i]] for i, logit in enumerate(logits)] # each of shape [K, T, card]
logits_final = []
for i, logit in enumerate(logits_use):
logit_copy = logit.clone()
for ii in range(self.args.n_codebooks):
logit_copy[ii] = torch.roll(logit_copy[ii], shifts=-ii, dims=0)
logit = logit_copy[:, :-self.args.n_codebooks] # [K, T, card] -> [K, T-n_codebooks, card]
logits_final.append(logit)
if self.args.no_loss_on_prefix:
assert "y_sep_token_position" in batch, f"y_sep_token_position should be in batch, but it's not"
logit_temp = []
target_temp = []
for jj, (logit, target) in enumerate(zip(logits_final, targets)):
# TODO already taken into consideration in depth transformer
logit_temp.append(logit[:, batch['y_sep_token_position'][jj]:])
target_temp.append(target[:, batch['y_sep_token_position'][jj]:])
logits_final = logit_temp
targets = target_temp
logits = torch.cat(logits_final, dim=1) # [K, T1+T2+T3+..., card]
targets = torch.cat(targets, dim=1) # [K, T1+T2+T3+...]
assert targets.shape[:2] == logits.shape[:2], f"{targets.shape}, {logits.shape}"
loss = []
ntokens = []
top10acc = []
for k, (logit, target) in enumerate(zip(logits, targets)): # even though the loss and top10acc is calculated in a loop (loop through n_codebooks), validation is still taking a lot of mem, need to optimize this a little more
loss.append(F.cross_entropy(logit, target, reduction='mean', weight=self.class_weight.data if self.args.eog_weight!=1 else None, ignore_index=self.args.y_sep_token if self.args.y_sep_token != None else -100)) # ignore audio sep token as it's unpredictable (like the random early stop bug happened in 2023)
# NOTE have to ignore the sep token in the loss calculation
top10acc.append(self.accuracy_metrics[k](logit.detach(), target))
ntokens.append(len(logit))
all_ntokens = sum(ntokens)
if self.args.codebook_weight != None:
codebook_weight = eval(self.args.codebook_weight) if isinstance(self.args.codebook_weight, str) else self.args.codebook_weight
else:
codebook_weight = [1.] * self.args.n_codebooks
perplexity_by_codebook = [torch.exp(l) for l in loss]
loss = sum([l*nt*cw for l, nt, cw in zip(loss, ntokens, codebook_weight)])
top10acc_by_codebook = [t10a*nt for t10a, nt in zip(top10acc, ntokens)]
top10acc = sum(top10acc_by_codebook)
ntokens = torch.tensor(all_ntokens).to(logits.device)
ret = {
"loss": loss,
"perplexity_by_codebook": perplexity_by_codebook,
"top10acc": top10acc,
"top10acc_by_codebook": top10acc_by_codebook,
"effective_ntoken": ntokens,
}
return ret
def inference_tts(
self,
x: torch.Tensor,
x_lens: torch.Tensor,
y: torch.Tensor,
tgt_y_lens: torch.Tensor, #
top_k: Union[int, list[int]]=-100,
top_p: float=1.0,
min_p: float=1.0,
temperature: float=1.0,
stop_repetition: int=3,
kvcache: int=1,
silence_tokens: list[int]=[],
multi_trial: list[int]=[],
*kargs
) -> torch.Tensor:
"""
different from inference_tts, this implementation uses kvcache, which should have significant speed up
Args:
x:
A 2-D tensor of shape (1, L).
x_lens:
A 1-D tensor of shape (1,). It contains the number of tokens in `x`
before padding.
y:
A 3-D tensor of shape (1, T, K).
tgt_y_lens:
*new arg* this specify the target length of y
top_k: (`optional`) int
The number of highest probability tokens to keep for top-k-filtering. Default to -100.
top_p: (`optional`) float
For Neucleus sampling
min_p: (`optional`) float
For min_p filtered sampling
temperature: (`optional`) float
The value used to module the next token probabilities. Must be strictly positive. Default to 1.0.
multi_trial: (`optional`) list[int]
If not empty, it will be [n_trials, beam_size, trial_interval]
from the start and begining trial_interval, we duplicate the current sample by beam_size,
at the end of every trial_interval, we choose the sample with the highest log likelihood to keep and throw away the rest
"""
eog_inference = self.args.eos if self.args.eos>0 else self.args.eog
assert x.ndim == 2, x.shape
assert x_lens.ndim == 1, x_lens.shape
assert y.ndim == 3, y.shape
if self.args.special_first:
y = y + int(self.args.n_special)
y = y.transpose(2,1) # [1,T,K] -> [1,K,T]
assert y.shape[0] == 1 and y.shape[1] == self.args.n_codebooks, y.shape # there is no padding
# make x attention mask and x_input
x_attention_mask = torch.triu(torch.ones(x.shape[1], x.shape[1]), diagonal=1).bool().to(x.device)
# x_attention_mask = torch.zeros(x.shape[1], x.shape[1]).bool().to(x.device)
x_input = self.text_embedding(x)
x_input = self.text_positional_embedding(x_input, x_lens)
y_len = y.shape[2]
y_lens = torch.LongTensor([y_len]).to(y.device)
# rearrange y, we don't add eog to the end, this doesn't actually do anything in the tts scenario
rearranged_y = [[y[0]]]
assert rearranged_y[0][0].shape[0] == self.args.n_codebooks, rearranged_y[0][0].shape
# # shift y to create the delayed pattern
if getattr(self, "empty_tokens", None) == None:
self.empty_tokens = torch.full((self.args.n_codebooks, self.args.n_codebooks), self.args.empty_token, dtype=torch.long).to(y.device) # [K, K]
temp = rearranged_y[0][0]
assert temp.ndim == 2 and temp.shape[0] == self.args.n_codebooks, temp.shape
temp = torch.cat([temp, self.empty_tokens], dim=-1) # [K, T+n_codebooks]
for ii in range(self.args.n_codebooks):
temp[ii] = torch.roll(temp[ii], shifts=ii+1, dims=0)
shifted_y = [[temp]]
# below is different from forward or inference
# where we cut this shifted part
shifted_y[0][0] = shifted_y[0][0][:, :-(self.args.n_codebooks-1)]
assert not (shifted_y[0][0][self.args.n_codebooks:] == self.args.empty_token).any() and not (shifted_y[0][0][self.args.n_codebooks:] == self.args.eog).any(), shifted_y[0][0]
# next section in inference is insert mask at the intersection of each tensor in a sample, but we don't need to do that
# next section is concate tensors of each sample to one tensor, which we also don't need
cated_y = shifted_y[0][0].unsqueeze(-1) #[K,S]->[K,S,B]
new_y_lens = torch.LongTensor([cated_y.shape[1]]).to(cated_y.device)
assert cated_y.shape == torch.Size((self.args.n_codebooks, cated_y.shape[1], 1))
assert not (cated_y == self.args.audio_pad_token).any(), cated_y
# replace tokens in y with the embeddings, add sum codebooks up
embedded_y = torch.stack([self.audio_embedding[k](cated_y[k]) for k in range(self.args.n_codebooks)], dim=0) # [K, S, B, D]
assert embedded_y.shape[0] == self.args.n_codebooks, embedded_y.shape
assert embedded_y.shape[-1] == self.args.d_model, embedded_y.shape
embedded_y = embedded_y.sum(dim=0) # [K,S,B,D]->[S,B,D]
embedded_y = embedded_y.transpose(1,0) # [S,B,D]->[B,S,D]
# positional embedding
y_input = self.audio_positional_embedding(embedded_y, tgt_y_lens)
# make attention mask and padding mask
y_attention_mask = torch.triu(torch.ones(y_input.shape[1], y_input.shape[1]), diagonal=1).bool().to(y.device)
x_padding_mask = torch.full((1,x_lens[0]), False).to(x.device)
y_padding_mask = torch.full((1,new_y_lens[0]), False).to(y.device)
# entering the generation stage
# starting from line 708
codebook_eog = [False] * self.args.n_codebooks
generated = [] # doesn't contain any empty token, contain eog
cur_generated = []
# say 0 is empty, 4 is eog
# tensor([[ 1, 2, 3, 4, 0, 0],
# [ 0, 1, 2, 3, 4, 0],
# [ 0, 0, 1, 2, 3, 4]])
num_gen = []
cur_num_gen = 0
##################### silence repetition handling #####################
##################### silence repetition handling #####################
# silence_tokens = [1388,1898,131] # [1388, 2045, 2041, 1996]
# silence_tokens = []
consec_silence_count = 0
prev_token = None
##################### silence repetition handling #####################
##################### silence repetition handling #####################
def sample_helper(n_eog, logits, codebook_eog, top_k, top_p, min_p, temperature, prev_token, consec_silence_count, stop_repetition, silence_tokens, cur_num_gen):
if n_eog == 0:
logits_adjust = logits
for jj in range(1,self.args.n_codebooks):
logits_adjust[jj][eog_inference] = -10000
logits_adjust[jj][self.args.empty_token] = -10000
if cur_num_gen <= self.args.encodec_sr // 5: # this shouldn't happen, but just in case the model stopped too early
logits_adjust[0][eog_inference] = -10000
##################### silence repetition handling #####################
if stop_repetition > 0 and prev_token in silence_tokens and consec_silence_count > stop_repetition:
if logits_adjust[0, prev_token] < 0:
logits_adjust[0, prev_token] = logits_adjust[0, prev_token] * (consec_silence_count - (stop_repetition-1))
else:
logits_adjust[0, prev_token] = logits_adjust[0, prev_token] / (consec_silence_count - (stop_repetition-1))
##################### silence repetition handling #####################
samples = topk_sampling(
logits_adjust, top_k=top_k, top_p=top_p, min_p=min_p, temperature=temperature
) # [K, 1]
assert samples.shape == torch.Size((self.args.n_codebooks, 1)), f"samples.shape: {samples.shape}"
if cur_num_gen < self.args.n_codebooks-1:
for jj in range(1, self.args.n_codebooks - cur_num_gen):
samples[-jj, 0] = self.args.empty_token
if (
samples[0,0] == eog_inference or torch.argmax(logits[0], dim=-1) == eog_inference or y_input.shape[1] > x_lens[0] * (self.args.encodec_sr//4)
) or self.args.rope_base is not None and not self.args.decoder_regular_rope and self.args.progress_no_multiple and cur_num_gen > (tgt_y_lens[0] + self.args.encodec_sr * getattr(self.args, "extra_cutoff", 5)):
# last one condition in the first bracket means y is already too long, shouldn't happen, but put it here
# the second bracket means we are using progress-monitoring RoPE, but the model is generating excessively long sequence (5 seconds more than specified), in which case we terminate the generation
samples[0,0] = eog_inference
codebook_eog[0] = True
##################### silence repetition handling #####################
if samples[0,0] in silence_tokens and samples[0,0] == prev_token:
consec_silence_count += 1
else:
consec_silence_count = 0
prev_token = samples[0,0]
##################### silence repetition handling #####################
return samples, codebook_eog, prev_token, consec_silence_count
else:
assert sum(codebook_eog[i] for i in range(n_eog)) == n_eog, f"codebook_eog: {codebook_eog}, but n_eog: {n_eog}"
logits_adjust = logits
for jj in range(n_eog+1,self.args.n_codebooks):
logits_adjust[jj][eog_inference] = -10000
logits_adjust[jj][self.args.empty_token] = -10000
samples = topk_sampling(
logits_adjust, top_k=top_k, top_p=top_p, min_p=min_p, temperature=temperature
) # [K, 1]
for jj in range(n_eog):
samples[jj, 0] = self.args.empty_token
samples[n_eog, 0] = eog_inference
codebook_eog[n_eog] = True
return samples, codebook_eog, prev_token, consec_silence_count
# prepare the cache placeholder
# n_layers, 2, bsz, num_heads, src_len, head_dim, 2 means [key, value]
past = torch.ones([self.args.num_decoder_layers, 2, x.shape[0]], device=x.device, dtype=torch.float32) if kvcache else None
if self.args.enc_dec:
xa = self.encoder(src=x_input, src_key_padding_mask=x_padding_mask)
while True:
if self.args.dec:
y_out, present = self.dec_forward(
x_input,
x_lens,
x_attention_mask,
x_padding_mask,
y_input,
new_y_lens,
y_attention_mask,
y_padding_mask,
past=past
)
else:
y_out, present = self.enc_dec_forward(
xa,
x_attention_mask,
x_padding_mask,
y_input,
new_y_lens,
y_attention_mask,
y_padding_mask,
tgt_y_lens=tgt_y_lens,
past=past
)
if past != None:
past = torch.cat([past, present.to(past.dtype)], dim=-2) if past.ndim > 3 else present.to(past.dtype)
y_out = y_out[:, -1:] # only take the last token
logits = torch.stack([self.predict_layer[i](y_out) for i in range(self.args.n_codebooks)], dim=1) # [B K S card], B==S==1, so [1 K 1 card]
logits = logits.squeeze(0).squeeze(1) # [K card]
assert logits.shape == torch.Size((self.args.n_codebooks, self.n_audio_tokens[0])), f"{logits.shape}"
n_eog = sum(codebook_eog)
assert n_eog < self.args.n_codebooks
if self.args.eos > 0: # if we are using end-of-sentence token (which is used by default), eog shouldn't be used here, as there is no masked spans
for jj in range(self.args.n_codebooks):
logits[jj][self.args.eog] = -10000.
samples, codebook_eog, prev_token, consec_silence_count = sample_helper(n_eog, logits, codebook_eog, top_k, top_p, min_p, temperature, prev_token, consec_silence_count, stop_repetition, silence_tokens, cur_num_gen)
# samples.shape is [K,1]
# ge samples_emb
samples_emb = torch.stack([self.audio_embedding[k](samples[k]) for k in range(self.args.n_codebooks)], dim=0) # [K,1,D]
samples_emb = samples_emb.sum(dim=0,keepdim=True) # [1,1,D]
cur_num_gen += 1
cur_generated.append(samples.squeeze(-1)) # [K,1] -> [K]
if sum(codebook_eog) == self.args.n_codebooks: # generation for the current span is done
codebook_eog = [False] * self.args.n_codebooks
num_gen.append(cur_num_gen)
cur_num_gen = 0
generated.append(cur_generated)
cur_generated = []
break
else:
assert samples_emb.shape == torch.Size((1,1,self.args.d_model)), f"samples_emb.shape: {samples_emb.shape}"
embedded_y = torch.cat([embedded_y, samples_emb], dim=1)
new_y_lens = torch.LongTensor([embedded_y.shape[1]]).to(y.device)
y_input = self.audio_positional_embedding(embedded_y, tgt_y_lens) # [B T D]
# make attention mask and padding mask
y_attention_mask = torch.triu(torch.ones(y_input.shape[1], y_input.shape[1]), diagonal=1).bool().to(y.device)
y_padding_mask = torch.full((1,new_y_lens[0]), False).to(y.device)
assert len(generated) == 1, f"len(generated): {len(generated)}"
# revert the pattern
flatten_gen = []
for l, orig_span in enumerate(generated):
span = torch.stack(orig_span, dim=0) # [T, K]
span = span.transpose(1,0) # [K, T]
assert span.shape[0] == self.args.n_codebooks, span.shape
unshifted_span = []
for j, s in enumerate(span):
start_from = j
end_at = - (self.args.n_codebooks - start_from)
unshifted_span.append(s[start_from:end_at])
unshifted_span = torch.stack(unshifted_span, dim=0)
assert unshifted_span.shape[1] == num_gen[l] - self.args.n_codebooks, f"len(unshifted_spans[0]): {len(unshifted_span[0])}, num_gen[l]: {num_gen[l]}"
flatten_gen.append(unshifted_span)
assert len(flatten_gen) == 1, len(flatten_gen)
# combine
res = [y[0], flatten_gen[0]]
res = torch.cat(res, dim=1).unsqueeze(0) # [K, new_t] -> [1, K, new_T]
expected_y_len = y_len + sum([item - self.args.n_codebooks for item in num_gen])
assert res.shape == torch.Size((1, self.args.n_codebooks, expected_y_len)), f"res.shape: {res.shape}, expected_y_len: {expected_y_len}. y_len + sum([item - self.args.n_codebooks for item in num_gen]): {y_len} + {sum([item - self.args.n_codebooks for item in num_gen])}"
if self.args.special_first:
res = res - int(self.args.n_special)
flatten_gen = flatten_gen - int(self.args.n_special)
return res, flatten_gen[0].unsqueeze(0)