File size: 39,871 Bytes
82bc972
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
import random, os, copy
from typing import Dict, Iterator, List, Tuple, Union
import logging
import numpy as np

import torch
import torch.nn as nn
import torch.nn.functional as F
from torchmetrics.classification import MulticlassAccuracy
import torch.distributed as dist

from .modules.utils import make_pad_mask, generate_partial_autoregressive_mask

from .modules.embedding import SinePositionalEmbedding, TokenEmbedding, SinePositionalEmbedding_progress
from .modules.transformer import (
    AdaptiveLayerNorm,
    LayerNorm,
    TransformerDecoderLayer,
    TransformerDecoder,
    TransformerEncoder,
    TransformerEncoderLayer,
)

def top_k_top_p_filtering(
    logits, top_k=0, top_p=1.0, min_p=1.0, filter_value=-float("Inf"), min_tokens_to_keep=1
):
    """Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
    Args:
        logits: logits distribution shape (batch size, vocabulary size)
        if top_k > 0: keep only top k tokens with highest probability (top-k filtering).
        if top_p < 1.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).
            Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
        Make sure we keep at least min_tokens_to_keep per batch example in the output
    From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317
    """
    if min_p < 1.0:
        probs = F.softmax(logits, dim=-1)
        indices_to_remove = probs < min_p
        if not torch.any(indices_to_remove.sum(-1) == logits.size(-1)):
            logits[indices_to_remove] = filter_value
            top_k = 0
            top_p = 1.0
        # else will use other types of sampling, or no filtering
            
    # If top_k is a single integer
    if isinstance(top_k, int) and top_k > 0:
        # Safety check to ensure we don't ask for more than available
        top_k = min(max(top_k, min_tokens_to_keep), logits.size(-1))

        # Remove all tokens with a probability less than the last token of the top-k
        threshold = torch.topk(logits, top_k, dim=-1)[0][..., -1, None]
        indices_to_remove = logits < threshold
        logits[indices_to_remove] = filter_value

    # If top_k is a list, assume it has the same length as M
    elif isinstance(top_k, list):
        # Ensure the length matches the first dimension
        assert len(top_k) == logits.size(0), \
            f"top_k list length ({len(top_k)}) must match logits.size(0) ({logits.size(0)})"

        for i in range(logits.size(0)):
            k_i = top_k[i]
            if k_i > 0:
                # Safety check
                k_i = min(max(k_i, min_tokens_to_keep), logits.size(-1))
                row_threshold = torch.topk(logits[i], k_i, dim=-1)[0][-1]
                indices_to_remove_i = logits[i] < row_threshold
                logits[i, indices_to_remove_i] = filter_value

    if top_p < 1.0:
        sorted_logits, sorted_indices = torch.sort(logits, descending=True)
        cumulative_probs = torch.cumsum(
            F.softmax(sorted_logits, dim=-1), dim=-1
        )

        # Remove tokens with cumulative probability above the threshold (token with 0 are kept)
        sorted_indices_to_remove = cumulative_probs > top_p
        if min_tokens_to_keep > 1:
            # Keep at least min_tokens_to_keep (set to min_tokens_to_keep-1 because we add the first one below)
            sorted_indices_to_remove[..., :min_tokens_to_keep] = 0
        # Shift the indices to the right to keep also the first token above the threshold
        sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[
            ..., :-1
        ].clone()
        sorted_indices_to_remove[..., 0] = 0

    return logits


def topk_sampling(logits, top_k=10, top_p=1.0, min_p=1.0, temperature=1.0):
    # temperature: (`optional`) float
    #     The value used to module the next token probabilities. Must be strictly positive. Default to 1.0.
    # top_k: (`optional`) int
    #     The number of highest probability vocabulary tokens to keep for top-k-filtering. Between 1 and infinity. Default to 50.
    # top_p: (`optional`) float
    #     The cumulative probability of parameter highest probability vocabulary tokens to keep for nucleus sampling. Must be between 0 and 1. Default to 1.

    # Temperature (higher temperature => more likely to sample low probability tokens)
    if temperature != 1.0:
        logits = logits / temperature
    # Top-p/top-k filtering
    logits = top_k_top_p_filtering(logits, top_k=top_k, top_p=top_p, min_p=min_p)
    # Sample
    token = torch.multinomial(F.softmax(logits, dim=-1), num_samples=1)
    return token



class VoiceStar(nn.Module):
    def __init__(self, args):
        super().__init__()
        self.args = args
        assert self.args.enc_dec ^ self.args.dec, f"self.args.enc_dec: {self.args.enc_dec}, self.args.dec: {self.args.dec}"
        if not getattr(self.args, "special_first", False):
            self.args.special_first = 0
        if not getattr(self.args, "n_special", False):
            self.args.n_special = 3
        self.args.eos = getattr(self.args, "eos", -1)
        self.eog = nn.Parameter(torch.full((self.args.n_codebooks, 1), self.args.eog, dtype=torch.long), requires_grad=False) # [K 1]
        if self.args.eos > 0:
            assert self.args.eos != self.args.audio_pad_token and self.args.eos != self.args.empty_token, self.args.eos
            self.eos = nn.Parameter(torch.full((self.args.n_codebooks, 1), self.args.eos, dtype=torch.long), requires_grad=False) # [K 1]
        if type(self.args.audio_vocab_size) == str:
            self.args.audio_vocab_size = eval(self.args.audio_vocab_size)
        if type(self.args.audio_vocab_size) == list: # otherwise they are all lists
            assert self.args.special_first
            

        self.n_text_tokens = self.args.text_vocab_size + 1
        assert self.args.text_pad_token == self.args.text_vocab_size, f"self.args.text_vocab_size: {self.args.text_vocab_size}, self.args.text_pad_token: {self.args.text_pad_token}"
        
        if self.args.special_first and type(self.args.audio_vocab_size) == list:
            self.n_audio_tokens = [tok + self.args.n_special for tok in self.args.audio_vocab_size] # special tokens: empty token, EOG token, audio pad token
            assert self.args.empty_token == 0, self.args.empty_token
            assert self.args.eog == 1, self.args.eog
            assert self.args.audio_pad_token == 2, self.args.audio_pad_token
        else:
            self.n_audio_tokens = [self.args.audio_vocab_size + self.args.n_special] * self.args.n_codebooks # special tokens: empty token, EOG token, audio pad token
            assert self.args.audio_vocab_size == self.args.empty_token, self.args.empty_token
            assert self.args.eog == self.args.audio_vocab_size + 1, self.args.eog
            assert self.args.audio_pad_token == self.args.audio_vocab_size + 2, self.args.audio_pad_token

        self.text_embedding = TokenEmbedding(
            dim_model=self.args.d_model,
            vocab_size=self.n_text_tokens, 
            dropout=self.args.text_embedding_dropout
        )

        self.audio_embedding = nn.ModuleList(
            [
                TokenEmbedding(
                dim_model=self.args.audio_embedding_dim, 
                vocab_size=self.n_audio_tokens[k], 
                dropout=self.args.audio_embedding_dropout
            ) for k in range(self.args.n_codebooks)
            ]
        )

        rope_base = getattr(self.args, "rope_base", None)
        use_sinusoidal = getattr(self.args, "use_sinusoidal", False)
        use_sinusoidal_progress = getattr(self.args, "use_sinusoidal_progress", False)
        logging.info(f"rope_base: {rope_base}, use_sinusoidal: {use_sinusoidal}")
        if use_sinusoidal:
            self.text_positional_embedding = SinePositionalEmbedding(
                self.args.d_model,
                dropout=self.args.text_positional_embedding_dropout,
                scale=False,
                alpha=True, # learnable scaler, scale the volume of positional embedding
            )
            self.audio_positional_embedding = SinePositionalEmbedding(
                self.args.d_model,
                dropout=self.args.audio_positional_embedding_dropout,
                scale=False,
                alpha=True, # learnable scaler, scale the volume of positional embedding
            )
        elif use_sinusoidal_progress:
            self.text_positional_embedding = SinePositionalEmbedding_progress(
                self.args.d_model,
                dropout=self.args.text_positional_embedding_dropout,
                scale=False,
                alpha=True, # learnable scaler, scale the volume of positional embedding
                args = self.args
            )
            self.audio_positional_embedding = SinePositionalEmbedding_progress(
                self.args.d_model,
                dropout=self.args.audio_positional_embedding_dropout,
                scale=False,
                alpha=True, # learnable scaler, scale the volume of positional embedding
                args = self.args
            )

        else:
            class NoOp:
                def __init__(self):
                    pass
                def __call__(self, *args, **kwargs):
                    return args[0]
            self.text_positional_embedding = NoOp()
            self.audio_positional_embedding = NoOp()

        if self.args.enc_dec:
            enc_layer = TransformerEncoderLayer(
                d_model=self.args.d_model,
                nhead=self.args.nhead,
                dim_feedforward=self.args.d_model*4,
                dropout=self.args.trm_dropout,
                batch_first=True,
                norm_first=True,
                layer_norm_cls=LayerNorm
            ) # use the pre-norm arch 

            self.encoder = TransformerEncoder(
                encoder_layer=enc_layer, 
                num_layers=self.args.num_encoder_layers, 
                norm=LayerNorm(self.args.d_model),
                rope_base = self.args.rope_base,
                d_model = self.args.d_model,
                nhead = self.args.nhead,
                args = self.args
            ) # use the pre-norm arch

            dec_layer = TransformerDecoderLayer(
                d_model=self.args.d_model,
                nhead=self.args.nhead,
                dim_feedforward=self.args.d_model*4,
                dropout=self.args.trm_dropout,
                batch_first=True,
                norm_first=True,
                layer_norm_cls=LayerNorm
            )

            self.decoder = TransformerDecoder(
                decoder_layer=dec_layer, 
                num_layers=self.args.num_decoder_layers,
                norm=LayerNorm(self.args.d_model),
                rope_base = self.args.rope_base,
                d_model = self.args.d_model,
                nhead = self.args.nhead,
                args = self.args
            ) # NOTE: this one I use torch.nn native implementation, as it's not implemented in .modules

        else:
            dec_layer = TransformerEncoderLayer(
                self.args.d_model,
                self.args.nhead,
                dim_feedforward=self.args.d_model * 4,
                dropout=self.args.trm_dropout,
                batch_first=True,
                norm_first=True,
                layer_norm_cls=LayerNorm
            )
            self.decoder = TransformerEncoder(
            dec_layer,
            num_layers=self.args.num_decoder_layers,
            norm=LayerNorm(self.args.d_model),
        )
        
        if type(self.args.audio_vocab_size) == int:
            self.predict_layer = nn.ModuleList(
                [
                    nn.Sequential(nn.Linear(self.args.d_model, self.args.audio_vocab_size//2), nn.GELU(), nn.Linear(self.args.audio_vocab_size//2, self.n_audio_tokens[k])) for k in range(self.args.n_codebooks)
                ]
            )
        else:
            self.predict_layer = nn.ModuleList(
                [
                    nn.Sequential(nn.Linear(self.args.d_model, self.args.d_model//2), nn.GELU(), nn.Linear(self.args.d_model//2, self.n_audio_tokens[k])) for k in range(self.args.n_codebooks)
                ]
            )

        self.accuracy_metrics = nn.ModuleList(
            [MulticlassAccuracy(
                self.n_audio_tokens[k],
                top_k=10,
                average="micro",
                multidim_average="global",
                ignore_index=None,
            ) for k in range(self.args.n_codebooks)]
        )

        if self.args.eog_weight != 1:
            raise NotImplementedError("now have different vocab_size for different codebooks, therefore currently don't support eog_weight")
            self.class_weight = nn.Parameter(torch.ones(self.n_audio_tokens), requires_grad=False)
            self.class_weight.data[self.args.eog] = self.args.eog_weight

    def dec_forward(
            self, 
            x_input, 
            x_lens,
            x_attention_mask,
            x_padding_mask,
            y_input,
            new_y_lens,
            y_attention_mask,
            y_padding_mask,
            need_weights=False,
            past=None,
            last_3_tokens=False
        ):
            x_attn_mask = F.pad(
                x_attention_mask,
                (0, new_y_lens.max()),
                value=True,
            ) # x attn to all x, doesn't attn to any y, this follow figure 3 of the valle paper
            y_attn_mask = F.pad(
                y_attention_mask,
                (x_lens.max(), 0), # y is padded at the front
                value=False,
            ) # y attn to all x, for y itself use lower triangle mask to ensure autoregressive
            xy_attn_mask = torch.concat([x_attn_mask, y_attn_mask], dim=0)

            # merge key padding and attention masks
            bsz, src_len = x_input.shape[0], x_lens.max() + new_y_lens.max()
            xy_padding_mask = torch.concat([x_padding_mask, y_padding_mask], dim=1)
            _xy_padding_mask = (
                xy_padding_mask.view(bsz, 1, 1, src_len)
                .expand(-1, self.args.nhead, -1, -1)
                .reshape(bsz * self.args.nhead, 1, src_len)
            )
            xy_attn_mask = xy_attn_mask.logical_or(_xy_padding_mask)

            new_attn_mask = torch.zeros_like(xy_attn_mask)
            new_attn_mask.masked_fill_(xy_attn_mask, float("-inf"))
            xy_attn_mask = new_attn_mask

            xy_input = torch.cat([x_input, y_input], dim=1)
            if need_weights:
                raise NotImplementedError("not implemented yet")
                out, layer_attn_weights =  self.decoder((xy_input, None), mask=xy_attn_mask, need_weights=True)
                return layer_attn_weights

            if past == None: # do not use kvcache
                out, _ =  self.decoder((xy_input, None), mask=xy_attn_mask)
                return out[:, x_lens.max():], None
            else: # use kvcache
                if past.ndim > 3: # uses kvcache, only need to pass the last tokens, this doesn't work with multi-span speech editing yet
                    if last_3_tokens:
                        xy_input = xy_input[:, -3:]
                        xy_attn_mask = xy_attn_mask[:, -3:]
                    else:
                        xy_input = xy_input[:, -1:]
                        xy_attn_mask = xy_attn_mask[:, -1:]

                out, present =  self.decoder((xy_input, None), mask=xy_attn_mask, past=past)
                if isinstance(out, tuple): # get rid of stage_embedding
                    out = out[0]

                if out.shape[1] > x_lens.max(): # the first pass, not kvcache yet
                    return out[:, x_lens.max():], present
                else: # used kvcache
                    return out, present

    def enc_dec_forward(
            self,
            xa,
            x_attention_mask,
            x_padding_mask,
            y_input,
            new_y_lens,
            y_attention_mask,
            y_padding_mask,
            tgt_y_lens=None,
            need_weights=False,
            past=None,
            last_3_tokens=False
        ):
        assert not need_weights
        if past != None and past.ndim > 3:
            y_input = y_input[:, -1:]
            y_attention_mask = y_attention_mask[-1:]
        yhat, present = self.decoder(tgt=y_input, memory=xa, tgt_mask=y_attention_mask, tgt_key_padding_mask=y_padding_mask, memory_key_padding_mask=x_padding_mask, query_lens=tgt_y_lens, past=past)
        return yhat, present

    def forward(self, batch, calc_loss = False):
        """
        Args:
          x:
            A 2-D tensor of shape (N, S).
          x_lens:
            A 1-D tensor of shape (N,). It contains the number of tokens in `x`
            before padding.
          y:
            A 3-D tensor of shape (N, K, T).
            where K is the number of codebooks
          y_lens:
            A 1-D tensor of shape (N,). It contains the number of tokens in `x`
            before padding.
        """
        x, x_lens, y, y_lens = batch["x"], batch["x_lens"], batch["y"], batch["y_lens"]
        if len(x) == 0:
            return None
        x = x[:, :x_lens.max()] # this deal with gradient accumulation, where x_lens.max() might not be longer than the length of the current slice of x
        y = y[...,:y_lens.max()]
        assert x.ndim == 2, x.shape
        assert x_lens.ndim == 1, x_lens.shape
        assert y.ndim == 3 and y.shape[1] == self.args.n_codebooks, y.shape
        assert y_lens.ndim == 1, y_lens.shape
        x_padding_mask = make_pad_mask(x_lens).to(x.device)
        x_attention_mask = torch.triu(torch.ones(x.shape[1], x.shape[1]), diagonal=1).bool().to(x_padding_mask.device)
        x_input = self.text_embedding(x)
        x_input = self.text_positional_embedding(x_input, x_lens)
        y_with_eos = [torch.cat([item[:, :y_lens[i]], self.eos], dim=-1) for i, item in enumerate(y)]
        targets = y_with_eos
        # apply delayed stacking on y
        shifted_y = []
        patterns = []
        new_y_lens = []
        if getattr(self, "empty_tokens", None) == None:
            self.empty_tokens = torch.full((self.args.n_codebooks, self.args.n_codebooks), self.args.empty_token, dtype=torch.long).to(y.device) # [K, K]
        for i in range(len(y)):
            tmp = torch.cat([y_with_eos[i], self.empty_tokens], dim=-1) # [K, T+n_codebooks]
            for ii in range(self.args.n_codebooks):
                tmp[ii] = torch.roll(tmp[ii], shifts=ii+1, dims=0)
            shifted_y.append(tmp.transpose(1,0)) # [K, T+n_codebooks] -> [T+n_codebooks, K]
            new_y_lens.append(y_with_eos[i].shape[1] + self.empty_tokens.shape[1])
            
        new_y_lens = torch.LongTensor(new_y_lens).to(y.device)

        cated_y = torch.nn.utils.rnn.pad_sequence(shifted_y, batch_first=False, padding_value=self.args.audio_pad_token)
        assert cated_y.shape == torch.Size([max(new_y_lens), len(y), self.args.n_codebooks]), cated_y.shape
        cated_y = cated_y.permute(2,0,1) # [T,B,K]->[K,T,B]
        stacked_embedded_y = torch.stack([self.audio_embedding[k](cated_y[k]) for k in range(self.args.n_codebooks)], dim=0) # [K, T, B, D]
        assert stacked_embedded_y.shape[0] == self.args.n_codebooks and stacked_embedded_y.shape[2] == len(y) and stacked_embedded_y.shape[-1] == self.args.d_model, stacked_embedded_y.shape
        embedded_y = stacked_embedded_y.sum(dim=0) # [K,T,B,D]->[T,B,D]
        embedded_y = embedded_y.transpose(1,0) # [T,B,D]->[B,T,D]
        assert embedded_y.shape[1:] == torch.Size([max(new_y_lens), self.args.d_model]), embedded_y.shape
        y_input = self.audio_positional_embedding(embedded_y, new_y_lens)
        y_padding_mask = make_pad_mask(new_y_lens).to(y.device)
        y_attention_mask = torch.triu(torch.ones(y_input.shape[1], y_input.shape[1]), diagonal=1).bool().to(y_padding_mask.device)
        if self.args.dec:
            y_out = self.dec_forward(
                    x_input, 
                    x_lens,
                    x_attention_mask,
                    x_padding_mask,
                    y_input,
                    new_y_lens,
                    y_attention_mask,
                    y_padding_mask
                )
        else:
            xa = self.encoder(src=x_input, src_key_padding_mask=x_padding_mask)
            y_out = self.enc_dec_forward(
                        xa,
                        x_attention_mask,
                        x_padding_mask,
                        y_input,
                        new_y_lens,
                        y_attention_mask,
                        y_padding_mask
                    )
        y_out = y_out[0] # no kv-caching during training
        assert y_out.shape == y_input.shape, f"y_out.shape: {y_out.shape}, y_input.shape: {y_input.shape}" # [B S D]
        logits = torch.stack([self.predict_layer[i](y_out) for i in range(self.args.n_codebooks)], dim=1) # [B K S card]
        assert logits.shape[1] == self.args.n_codebooks and logits.shape[3] == self.n_audio_tokens[0], logits.shape
        logits_use = [logit[:, :new_y_lens[i]] for i, logit in enumerate(logits)] # each of shape [K, T, card]
        logits_final = []
        for i, logit in enumerate(logits_use):
            logit_copy = logit.clone()
            for ii in range(self.args.n_codebooks):
                logit_copy[ii] = torch.roll(logit_copy[ii], shifts=-ii, dims=0)
            logit = logit_copy[:, :-self.args.n_codebooks] # [K, T, card] -> [K, T-n_codebooks, card]
            logits_final.append(logit)
        if self.args.no_loss_on_prefix:
            assert "y_sep_token_position" in batch, f"y_sep_token_position should be in batch, but it's not"
            logit_temp = []
            target_temp = []
            for jj, (logit, target) in enumerate(zip(logits_final, targets)):
                # TODO already taken into consideration in depth transformer
                logit_temp.append(logit[:, batch['y_sep_token_position'][jj]:])
                target_temp.append(target[:, batch['y_sep_token_position'][jj]:]) 
            logits_final = logit_temp
            targets = target_temp
        logits = torch.cat(logits_final, dim=1) # [K, T1+T2+T3+..., card]
        targets = torch.cat(targets, dim=1) # [K, T1+T2+T3+...]
        
        assert targets.shape[:2] == logits.shape[:2], f"{targets.shape}, {logits.shape}"
        loss = []
        ntokens = []
        top10acc = []
        for k, (logit, target) in enumerate(zip(logits, targets)): # even though the loss and top10acc is calculated in a loop (loop through n_codebooks), validation is still taking a lot of mem, need to optimize this a little more
            loss.append(F.cross_entropy(logit, target, reduction='mean', weight=self.class_weight.data if self.args.eog_weight!=1 else None, ignore_index=self.args.y_sep_token if self.args.y_sep_token != None else -100)) # ignore audio sep token as it's unpredictable (like the random early stop bug happened in 2023)
            # NOTE have to ignore the sep token in the loss calculation
            top10acc.append(self.accuracy_metrics[k](logit.detach(), target))
            ntokens.append(len(logit))
        
        all_ntokens = sum(ntokens)
        if self.args.codebook_weight != None:
            codebook_weight = eval(self.args.codebook_weight) if isinstance(self.args.codebook_weight, str) else self.args.codebook_weight
        else:
            codebook_weight = [1.] * self.args.n_codebooks
        perplexity_by_codebook = [torch.exp(l) for l in loss]
        loss = sum([l*nt*cw for l, nt, cw in zip(loss, ntokens, codebook_weight)])
        
        top10acc_by_codebook = [t10a*nt for t10a, nt in zip(top10acc, ntokens)]
        top10acc = sum(top10acc_by_codebook)

        ntokens = torch.tensor(all_ntokens).to(logits.device)
        
        ret = {
            "loss": loss,
            "perplexity_by_codebook": perplexity_by_codebook,
            "top10acc": top10acc,
            "top10acc_by_codebook": top10acc_by_codebook,
            "effective_ntoken": ntokens,
        }

        return ret

    def inference_tts(
        self,
        x: torch.Tensor,
        x_lens: torch.Tensor,
        y: torch.Tensor,
        tgt_y_lens: torch.Tensor, # 
        top_k: Union[int, list[int]]=-100,
        top_p: float=1.0,
        min_p: float=1.0,
        temperature: float=1.0,
        stop_repetition: int=3,
        kvcache: int=1,
        silence_tokens: list[int]=[],
        multi_trial: list[int]=[],
        *kargs
    ) -> torch.Tensor:
        """
        different from inference_tts, this implementation uses kvcache, which should have significant speed up
        Args:
          x:
            A 2-D tensor of shape (1, L).
          x_lens:
            A 1-D tensor of shape (1,). It contains the number of tokens in `x`
            before padding.
          y:
            A 3-D tensor of shape (1, T, K).
          tgt_y_lens:
            *new arg* this specify the target length of y
          top_k: (`optional`) int
            The number of highest probability tokens to keep for top-k-filtering. Default to -100.
          top_p: (`optional`) float
            For Neucleus sampling
          min_p: (`optional`) float
            For min_p filtered sampling
          temperature: (`optional`) float
            The value used to module the next token probabilities. Must be strictly positive. Default to 1.0.
          multi_trial: (`optional`) list[int]
            If not empty, it will be [n_trials, beam_size, trial_interval]
            from the start and begining trial_interval, we duplicate the current sample by beam_size, 
            at the end of every trial_interval, we choose the sample with the highest log likelihood to keep and throw away the rest
        """
        eog_inference = self.args.eos if self.args.eos>0 else self.args.eog
        assert x.ndim == 2, x.shape
        assert x_lens.ndim == 1, x_lens.shape
        assert y.ndim == 3, y.shape
        if self.args.special_first:
            y = y + int(self.args.n_special)
        y = y.transpose(2,1) # [1,T,K] -> [1,K,T]
        assert y.shape[0] == 1 and y.shape[1] == self.args.n_codebooks, y.shape # there is no padding

        # make x attention mask and x_input
        x_attention_mask = torch.triu(torch.ones(x.shape[1], x.shape[1]), diagonal=1).bool().to(x.device)
        # x_attention_mask = torch.zeros(x.shape[1], x.shape[1]).bool().to(x.device)
        x_input = self.text_embedding(x)
        x_input = self.text_positional_embedding(x_input, x_lens)

        y_len = y.shape[2]
        y_lens = torch.LongTensor([y_len]).to(y.device)

        # rearrange y, we don't add eog to the end, this doesn't actually do anything in the tts scenario
        rearranged_y = [[y[0]]]
        assert rearranged_y[0][0].shape[0] == self.args.n_codebooks, rearranged_y[0][0].shape
        
        # # shift y to create the delayed pattern
        if getattr(self, "empty_tokens", None) == None:
            self.empty_tokens = torch.full((self.args.n_codebooks, self.args.n_codebooks), self.args.empty_token, dtype=torch.long).to(y.device) # [K, K]
        temp = rearranged_y[0][0]
        assert temp.ndim == 2 and temp.shape[0] == self.args.n_codebooks, temp.shape
        temp = torch.cat([temp, self.empty_tokens], dim=-1) # [K, T+n_codebooks]
        for ii in range(self.args.n_codebooks):
            temp[ii] = torch.roll(temp[ii], shifts=ii+1, dims=0)
        shifted_y = [[temp]]

        # below is different from forward or inference
        # where we cut this shifted part 
        shifted_y[0][0] = shifted_y[0][0][:, :-(self.args.n_codebooks-1)]
        assert not (shifted_y[0][0][self.args.n_codebooks:] == self.args.empty_token).any() and not (shifted_y[0][0][self.args.n_codebooks:] == self.args.eog).any(), shifted_y[0][0]
        # next section in inference is insert mask at the intersection of each tensor in a sample, but we don't need to do that 
        # next section is concate tensors of each sample to one tensor, which we also don't need
        cated_y = shifted_y[0][0].unsqueeze(-1) #[K,S]->[K,S,B]
        new_y_lens = torch.LongTensor([cated_y.shape[1]]).to(cated_y.device)
        assert cated_y.shape == torch.Size((self.args.n_codebooks, cated_y.shape[1], 1))
        assert not (cated_y == self.args.audio_pad_token).any(), cated_y

        # replace tokens in y with the embeddings, add sum codebooks up
        embedded_y = torch.stack([self.audio_embedding[k](cated_y[k]) for k in range(self.args.n_codebooks)], dim=0) # [K, S, B, D]
        assert embedded_y.shape[0] == self.args.n_codebooks, embedded_y.shape
        assert embedded_y.shape[-1] == self.args.d_model, embedded_y.shape
        embedded_y = embedded_y.sum(dim=0) # [K,S,B,D]->[S,B,D]
        embedded_y = embedded_y.transpose(1,0) # [S,B,D]->[B,S,D]
        
        # positional embedding
        y_input = self.audio_positional_embedding(embedded_y, tgt_y_lens)

        # make attention mask and padding mask
        y_attention_mask = torch.triu(torch.ones(y_input.shape[1], y_input.shape[1]), diagonal=1).bool().to(y.device)

        x_padding_mask = torch.full((1,x_lens[0]), False).to(x.device)
        y_padding_mask = torch.full((1,new_y_lens[0]), False).to(y.device)

        # entering the generation stage
        # starting from line 708
        codebook_eog = [False] * self.args.n_codebooks
        generated = [] # doesn't contain any empty token, contain eog
        cur_generated = []
        # say 0 is empty, 4 is eog
        # tensor([[ 1,  2,  3,  4,  0,  0],
        #         [ 0,  1,  2,  3,  4,  0],
        #         [ 0,  0,  1,  2,  3,  4]])
        num_gen = []
        cur_num_gen = 0
        ##################### silence repetition handling #####################
        ##################### silence repetition handling #####################
        # silence_tokens = [1388,1898,131] # [1388, 2045, 2041, 1996]
        # silence_tokens = []
        consec_silence_count = 0
        prev_token = None
        ##################### silence repetition handling #####################
        ##################### silence repetition handling #####################

        def sample_helper(n_eog, logits, codebook_eog, top_k, top_p, min_p, temperature, prev_token, consec_silence_count, stop_repetition, silence_tokens, cur_num_gen):
            if n_eog == 0:
                logits_adjust = logits
                for jj in range(1,self.args.n_codebooks):
                    logits_adjust[jj][eog_inference] = -10000
                    logits_adjust[jj][self.args.empty_token] = -10000
                if cur_num_gen <= self.args.encodec_sr // 5: # this shouldn't happen, but just in case the model stopped too early
                    logits_adjust[0][eog_inference] = -10000
                ##################### silence repetition handling #####################
                if stop_repetition > 0 and prev_token in silence_tokens and consec_silence_count > stop_repetition:
                    if logits_adjust[0, prev_token] < 0:
                        logits_adjust[0, prev_token] = logits_adjust[0, prev_token] * (consec_silence_count - (stop_repetition-1))
                    else:
                        logits_adjust[0, prev_token] = logits_adjust[0, prev_token] / (consec_silence_count - (stop_repetition-1))
                ##################### silence repetition handling #####################
                samples = topk_sampling(
                        logits_adjust, top_k=top_k, top_p=top_p, min_p=min_p, temperature=temperature
                    ) # [K, 1]
                assert samples.shape == torch.Size((self.args.n_codebooks, 1)), f"samples.shape: {samples.shape}"
                if cur_num_gen < self.args.n_codebooks-1:
                    for jj in range(1, self.args.n_codebooks - cur_num_gen):
                        samples[-jj, 0] = self.args.empty_token
                
                if (
                    samples[0,0] == eog_inference or torch.argmax(logits[0], dim=-1) == eog_inference or y_input.shape[1] > x_lens[0] * (self.args.encodec_sr//4)
                ) or self.args.rope_base is not None and not self.args.decoder_regular_rope and self.args.progress_no_multiple and cur_num_gen > (tgt_y_lens[0] + self.args.encodec_sr * getattr(self.args, "extra_cutoff", 5)): 
                # last one condition in the first bracket means y is already too long, shouldn't happen, but put it here
                # the second bracket means we are using progress-monitoring RoPE, but the model is generating excessively long sequence (5 seconds more than specified), in which case we terminate the generation
                    samples[0,0] = eog_inference
                    codebook_eog[0] = True
                ##################### silence repetition handling #####################
                if samples[0,0] in silence_tokens and samples[0,0] == prev_token:
                    consec_silence_count += 1
                else:
                    consec_silence_count = 0
                prev_token = samples[0,0]
                ##################### silence repetition handling #####################
                return samples, codebook_eog, prev_token, consec_silence_count
            else:
                assert sum(codebook_eog[i] for i in range(n_eog)) == n_eog, f"codebook_eog: {codebook_eog}, but n_eog: {n_eog}"
                logits_adjust = logits
                for jj in range(n_eog+1,self.args.n_codebooks):
                    logits_adjust[jj][eog_inference] = -10000
                    logits_adjust[jj][self.args.empty_token] = -10000
                samples = topk_sampling(
                        logits_adjust, top_k=top_k, top_p=top_p, min_p=min_p, temperature=temperature
                    ) # [K, 1]
                for jj in range(n_eog):
                    samples[jj, 0] = self.args.empty_token
                samples[n_eog, 0] = eog_inference
                codebook_eog[n_eog] = True
                return samples, codebook_eog, prev_token, consec_silence_count
        
        # prepare the cache placeholder
        # n_layers, 2, bsz, num_heads, src_len, head_dim, 2 means [key, value]
        past = torch.ones([self.args.num_decoder_layers, 2, x.shape[0]], device=x.device, dtype=torch.float32) if kvcache else None
        if self.args.enc_dec:
            xa = self.encoder(src=x_input, src_key_padding_mask=x_padding_mask)
        while True:
            if self.args.dec:
                y_out, present = self.dec_forward(
                                x_input, 
                                x_lens,
                                x_attention_mask,
                                x_padding_mask,
                                y_input,
                                new_y_lens,
                                y_attention_mask,
                                y_padding_mask,
                                past=past
                            )
            else:
                y_out, present = self.enc_dec_forward(
                                xa,
                                x_attention_mask,
                                x_padding_mask,
                                y_input,
                                new_y_lens,
                                y_attention_mask,
                                y_padding_mask,
                                tgt_y_lens=tgt_y_lens,
                                past=past
                            )
            if past != None:
                past = torch.cat([past, present.to(past.dtype)], dim=-2) if past.ndim > 3 else present.to(past.dtype)


            y_out = y_out[:, -1:] # only take the last token

            logits = torch.stack([self.predict_layer[i](y_out) for i in range(self.args.n_codebooks)], dim=1) # [B K S card], B==S==1, so [1 K 1 card]
            logits = logits.squeeze(0).squeeze(1) # [K card]
            assert logits.shape == torch.Size((self.args.n_codebooks, self.n_audio_tokens[0])), f"{logits.shape}"

            n_eog = sum(codebook_eog)
            assert n_eog < self.args.n_codebooks
            if self.args.eos > 0: # if we are using end-of-sentence token (which is used by default), eog shouldn't be used here, as there is no masked spans
                for jj in range(self.args.n_codebooks):
                    logits[jj][self.args.eog] = -10000.
            
            samples, codebook_eog, prev_token, consec_silence_count = sample_helper(n_eog, logits, codebook_eog, top_k, top_p, min_p, temperature, prev_token, consec_silence_count, stop_repetition, silence_tokens, cur_num_gen)
            # samples.shape is [K,1]
            # ge samples_emb
            samples_emb = torch.stack([self.audio_embedding[k](samples[k]) for k in range(self.args.n_codebooks)], dim=0) # [K,1,D]
            samples_emb = samples_emb.sum(dim=0,keepdim=True) # [1,1,D]

            cur_num_gen += 1
            cur_generated.append(samples.squeeze(-1)) # [K,1] -> [K]

            if sum(codebook_eog) == self.args.n_codebooks: # generation for the current span is done
                codebook_eog = [False] * self.args.n_codebooks
                num_gen.append(cur_num_gen)
                cur_num_gen = 0
                generated.append(cur_generated)
                cur_generated = []
                break
            else:
                assert samples_emb.shape == torch.Size((1,1,self.args.d_model)), f"samples_emb.shape: {samples_emb.shape}"
            
            embedded_y = torch.cat([embedded_y, samples_emb], dim=1)
            new_y_lens = torch.LongTensor([embedded_y.shape[1]]).to(y.device)
            y_input = self.audio_positional_embedding(embedded_y, tgt_y_lens) # [B T D]
            # make attention mask and padding mask
            y_attention_mask = torch.triu(torch.ones(y_input.shape[1], y_input.shape[1]), diagonal=1).bool().to(y.device)
            y_padding_mask = torch.full((1,new_y_lens[0]), False).to(y.device)
        
        assert len(generated) == 1, f"len(generated): {len(generated)}"

        # revert the pattern
        flatten_gen = []
        for l, orig_span in enumerate(generated):
            span = torch.stack(orig_span, dim=0) # [T, K]
            span = span.transpose(1,0) # [K, T]
            assert span.shape[0] == self.args.n_codebooks, span.shape
            unshifted_span = []
            for j, s in enumerate(span):
                start_from = j
                end_at = - (self.args.n_codebooks - start_from)
                unshifted_span.append(s[start_from:end_at])
            unshifted_span = torch.stack(unshifted_span, dim=0)

            assert unshifted_span.shape[1] == num_gen[l] - self.args.n_codebooks, f"len(unshifted_spans[0]): {len(unshifted_span[0])}, num_gen[l]: {num_gen[l]}"

            flatten_gen.append(unshifted_span)
        assert len(flatten_gen) == 1, len(flatten_gen)
        
        # combine 
        res = [y[0], flatten_gen[0]]
        res = torch.cat(res, dim=1).unsqueeze(0) # [K, new_t] -> [1, K, new_T]
        expected_y_len = y_len + sum([item - self.args.n_codebooks for item in num_gen])
        assert res.shape == torch.Size((1, self.args.n_codebooks, expected_y_len)), f"res.shape: {res.shape}, expected_y_len: {expected_y_len}. y_len + sum([item - self.args.n_codebooks for item in num_gen]): {y_len} + {sum([item - self.args.n_codebooks for item in num_gen])}"

        if self.args.special_first:
            res = res - int(self.args.n_special)
            flatten_gen = flatten_gen - int(self.args.n_special)
        return res, flatten_gen[0].unsqueeze(0)