Reserch / app.py
mike23415's picture
Update app.py
7905cfc verified
import os
import time
import tempfile
import jinja2
import pdfkit
import torch
import logging
import subprocess
from threading import Thread
from flask import Flask, request, send_file, jsonify
from flask_cors import CORS
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
# Configure cache directories
os.environ['HF_HOME'] = '/app/.cache'
os.environ['XDG_CACHE_HOME'] = '/app/.cache'
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s [%(levelname)s] %(message)s'
)
# Initialize Flask app
app = Flask(__name__)
CORS(app)
# Global state tracking
model_loaded = False
load_error = None
generator = None
# Find wkhtmltopdf path
WKHTMLTOPDF_PATH = '/usr/bin/wkhtmltopdf'
if not os.path.exists(WKHTMLTOPDF_PATH):
# Try to find it using which
try:
WKHTMLTOPDF_PATH = subprocess.check_output(['which', 'wkhtmltopdf']).decode().strip()
except:
app.logger.warning("Could not find wkhtmltopdf path. Using default.")
WKHTMLTOPDF_PATH = 'wkhtmltopdf'
# Configure wkhtmltopdf
pdf_config = pdfkit.configuration(wkhtmltopdf=WKHTMLTOPDF_PATH)
def load_model():
global model_loaded, load_error, generator
try:
app.logger.info("Starting model loading process")
# Detect device and dtype automatically
dtype = torch.float16 if torch.cuda.is_available() else torch.float32
device = "cuda" if torch.cuda.is_available() else "cpu"
app.logger.info(f"Device set to use {device}")
model = AutoModelForCausalLM.from_pretrained(
"gpt2",
use_safetensors=True,
device_map="auto",
torch_dtype=dtype,
low_cpu_mem_usage=True,
offload_folder="offload"
)
tokenizer = AutoTokenizer.from_pretrained("gpt2")
# Initialize pipeline without explicit device assignment
generator = pipeline(
'text-generation',
model=model,
tokenizer=tokenizer,
torch_dtype=dtype
)
model_loaded = True
app.logger.info(f"Model loaded successfully on {model.device}")
except Exception as e:
load_error = str(e)
app.logger.error(f"Model loading failed: {load_error}", exc_info=True)
# Start model loading in background thread
Thread(target=load_model).start()
# --------------------------------------------------
# IEEE Format Template
# --------------------------------------------------
IEEE_TEMPLATE = """
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>{{ title }}</title>
<style>
@page { margin: 0.75in; }
body {
font-family: 'Times New Roman', Times, serif;
font-size: 12pt;
line-height: 1.5;
}
.header { text-align: center; margin-bottom: 24pt; }
.two-column { column-count: 2; column-gap: 0.5in; }
h1 { font-size: 14pt; margin: 12pt 0; }
h2 { font-size: 12pt; margin: 12pt 0 6pt 0; }
.abstract { margin-bottom: 24pt; }
.keywords { font-weight: bold; margin: 12pt 0; }
.references { margin-top: 24pt; }
.reference-item { text-indent: -0.5in; padding-left: 0.5in; }
</style>
</head>
<body>
<div class="header">
<h1>{{ title }}</h1>
<div class="author-info">
{% for author in authors %}
{{ author.name }}<br>
{% if author.institution %}{{ author.institution }}<br>{% endif %}
{% if author.email %}Email: {{ author.email }}{% endif %}
{% if not loop.last %}<br>{% endif %}
{% endfor %}
</div>
</div>
<div class="abstract">
<h2>Abstract</h2>
{{ abstract }}
<div class="keywords">Keywords— {{ keywords }}</div>
</div>
<div class="two-column">
{% for section in sections %}
<h2>{{ section.title }}</h2>
{{ section.content }}
{% endfor %}
</div>
<div class="references">
<h2>References</h2>
{% for ref in references %}
<div class="reference-item">[{{ loop.index }}] {{ ref }}</div>
{% endfor %}
</div>
</body>
</html>
"""
# --------------------------------------------------
# API Endpoints
# --------------------------------------------------
@app.route('/health', methods=['GET'])
def health_check():
return jsonify({
"status": "ok",
"model_loaded": model_loaded,
"device": "cuda" if torch.cuda.is_available() else "cpu"
}), 200
app.logger.info(f"Health check returning status: {'ready' if model_loaded else 'loading'}, device: {device_info}")
return jsonify({
"status": "ready" if model_loaded else "loading",
"model_loaded": model_loaded,
"device": device_info
}), status_code
@app.route('/generate', methods=['POST'])
def generate_pdf():
# Check model status
if not model_loaded:
app.logger.error("PDF generation requested but model not loaded")
return jsonify({
"error": "Model not loaded yet",
"status": "loading"
}), 503
try:
app.logger.info("Processing PDF generation request")
# Validate input
data = request.json
if not data:
app.logger.error("No data provided in request")
return jsonify({"error": "No data provided"}), 400
required = ['title', 'authors', 'content']
if missing := [field for field in required if field not in data]:
app.logger.error(f"Missing required fields: {missing}")
return jsonify({
"error": f"Missing fields: {', '.join(missing)}"
}), 400
app.logger.info(f"Received request with title: {data['title']}")
# Format content with model
app.logger.info("Formatting content using the model")
formatted = format_content(data['content'])
app.logger.info("Creating HTML from template")
# Generate HTML
html = jinja2.Template(IEEE_TEMPLATE).render(
title=data['title'],
authors=data['authors'],
abstract=formatted.get('abstract', ''),
keywords=', '.join(formatted.get('keywords', [])),
sections=formatted.get('sections', []),
references=formatted.get('references', [])
)
# PDF options
options = {
'page-size': 'Letter',
'margin-top': '0.75in',
'margin-right': '0.75in',
'margin-bottom': '0.75in',
'margin-left': '0.75in',
'encoding': 'UTF-8',
'quiet': ''
}
# Create temporary PDF
app.logger.info("Generating PDF file")
pdf_path = None
try:
with tempfile.NamedTemporaryFile(delete=False, suffix='.pdf') as f:
pdf_path = f.name
# Generate PDF using xvfb-run as a separate process
html_path = pdf_path + '.html'
with open(html_path, 'w', encoding='utf-8') as f:
f.write(html)
command = ['xvfb-run', '-a', WKHTMLTOPDF_PATH] + \
[f'--{k}={v}' for k, v in options.items() if v] + \
[html_path, pdf_path]
app.logger.info(f"Running command: {' '.join(command)}")
result = subprocess.run(command, capture_output=True, text=True)
if result.returncode != 0:
app.logger.error(f"PDF generation command failed: {result.stderr}")
# Fallback to direct pdfkit if available
app.logger.info("Trying fallback PDF generation with pdfkit")
pdfkit.from_string(html, pdf_path, options=options, configuration=pdf_config)
# Clean up HTML file
os.remove(html_path)
app.logger.info(f"PDF generated successfully at {pdf_path}")
return send_file(pdf_path, mimetype='application/pdf', as_attachment=True,
download_name=f"{data['title'].replace(' ', '_')}.pdf")
except Exception as e:
app.logger.error(f"PDF generation failed: {str(e)}", exc_info=True)
raise
except Exception as e:
app.logger.error(f"Request processing failed: {str(e)}", exc_info=True)
return jsonify({"error": str(e)}), 500
finally:
# Clean up temporary file
if 'pdf_path' in locals() and pdf_path:
try:
app.logger.info(f"Cleaning up temporary file {pdf_path}")
os.remove(pdf_path)
except Exception as e:
app.logger.warning(f"Failed to remove temporary file: {str(e)}")
# --------------------------------------------------
# Content Formatting
# --------------------------------------------------
def parse_formatted_content(text):
"""Parse the generated text into structured sections"""
app.logger.info("Parsing formatted content")
try:
lines = text.split('\n')
# Default structure
result = {
'abstract': '',
'keywords': ['IEEE', 'format', 'research', 'paper'],
'sections': [],
'references': []
}
# Extract abstract (simple approach - first paragraph after "Abstract")
abstract_start = None
for i, line in enumerate(lines):
if line.strip().lower() == 'abstract':
abstract_start = i + 1
break
if abstract_start:
abstract_text = []
i = abstract_start
while i < len(lines) and not lines[i].strip().lower().startswith('keyword'):
if lines[i].strip():
abstract_text.append(lines[i].strip())
i += 1
result['abstract'] = ' '.join(abstract_text)
# Extract keywords
for line in lines:
if line.strip().lower().startswith('keyword'):
# Extract keywords from the line
keyword_parts = line.split('—')
if len(keyword_parts) > 1:
keywords = keyword_parts[1].strip().split(',')
result['keywords'] = [k.strip() for k in keywords if k.strip()]
break
# Extract sections
current_section = None
section_content = []
# Skip lines until we find a section heading
started = False
for line in lines:
# Very basic heuristic for Roman numerals section headings
if line.strip() and (line.strip()[0].isupper() or line.strip()[0].isdigit()):
started = True
if not started:
continue
if line.strip() and (line.strip()[0].isupper() or line.strip()[0].isdigit()) and len(line.strip().split()) <= 6:
# This is likely a section heading
if current_section:
# Save the previous section
result['sections'].append({
'title': current_section,
'content': '\n'.join(section_content)
})
section_content = []
current_section = line.strip()
elif current_section and line.strip().lower() == 'references':
# We've reached the references section
if current_section:
# Save the last section
result['sections'].append({
'title': current_section,
'content': '\n'.join(section_content)
})
break
elif current_section:
# Add to current section content
section_content.append(line)
# Extract references
in_references = False
for line in lines:
if line.strip().lower() == 'references':
in_references = True
continue
if in_references and line.strip():
result['references'].append(line.strip())
app.logger.info(f"Content parsed into {len(result['sections'])} sections and {len(result['references'])} references")
return result
except Exception as e:
app.logger.error(f"Error parsing formatted content: {str(e)}", exc_info=True)
# Return a basic structure if parsing fails
return {
'abstract': 'Error parsing content.',
'keywords': ['IEEE', 'format'],
'sections': [{'title': 'Content', 'content': text}],
'references': []
}
def format_content(content):
"""Format the content using the ML model"""
try:
app.logger.info("Formatting content with ML model")
prompt = f"Format this research content to IEEE standards with sections, abstract, and references:\n\n{str(content)}"
response = generator(
prompt,
max_new_tokens=1024, # Increased for more complete generation
temperature=0.5, # More deterministic output
do_sample=True,
truncation=True,
num_return_sequences=1
)
generated_text = response[0]['generated_text']
# Remove the prompt from the generated text
if prompt in generated_text:
formatted_text = generated_text[len(prompt):].strip()
else:
formatted_text = generated_text
app.logger.info("Content formatted successfully")
# Parse the formatted text into structured sections
return parse_formatted_content(formatted_text)
except Exception as e:
app.logger.error(f"Error formatting content: {str(e)}", exc_info=True)
# Return the original content if formatting fails
return {
'abstract': 'Content processing error.',
'keywords': ['IEEE', 'format'],
'sections': [{'title': 'Content', 'content': str(content)}],
'references': []
}
if __name__ == '__main__':
app.run(host='0.0.0.0', port=5000)