File size: 14,477 Bytes
9d13a5a f67e43c 45e4b1d 9d13a5a d2e3ccd 827b95e d2e3ccd 9d13a5a a3b8412 9d13a5a 827b95e f67e43c 2dddabe f67e43c 827b95e 9d13a5a 45e4b1d f67e43c 45e4b1d f67e43c 9d13a5a f67e43c 2dddabe f67e43c 2dddabe 9d13a5a 7905cfc 9d13a5a 2dddabe 7905cfc 9d13a5a 7905cfc 9d13a5a 2dddabe 9d13a5a 2dddabe 9d13a5a f67e43c 9d13a5a f67e43c 9d13a5a 827b95e 9d13a5a 827b95e 9d13a5a d2e3ccd 827b95e d2e3ccd 827b95e d2e3ccd 827b95e 9d13a5a 7905cfc f67e43c 9d13a5a f67e43c 827b95e 9d13a5a f67e43c 9d13a5a d2e3ccd f67e43c 9d13a5a d2e3ccd 9d13a5a f67e43c 9d13a5a f67e43c 9d13a5a d2e3ccd f67e43c 9d13a5a d2e3ccd f67e43c d2e3ccd 9d13a5a f67e43c 45e4b1d f67e43c 45e4b1d f67e43c d2e3ccd f67e43c d2e3ccd f67e43c d2e3ccd f67e43c 9d13a5a f67e43c 9d13a5a f67e43c 9d13a5a f67e43c 9d13a5a f67e43c 9d13a5a f67e43c 9d13a5a f67e43c 9d13a5a f67e43c 827b95e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 |
import os
import time
import tempfile
import jinja2
import pdfkit
import torch
import logging
import subprocess
from threading import Thread
from flask import Flask, request, send_file, jsonify
from flask_cors import CORS
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
# Configure cache directories
os.environ['HF_HOME'] = '/app/.cache'
os.environ['XDG_CACHE_HOME'] = '/app/.cache'
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s [%(levelname)s] %(message)s'
)
# Initialize Flask app
app = Flask(__name__)
CORS(app)
# Global state tracking
model_loaded = False
load_error = None
generator = None
# Find wkhtmltopdf path
WKHTMLTOPDF_PATH = '/usr/bin/wkhtmltopdf'
if not os.path.exists(WKHTMLTOPDF_PATH):
# Try to find it using which
try:
WKHTMLTOPDF_PATH = subprocess.check_output(['which', 'wkhtmltopdf']).decode().strip()
except:
app.logger.warning("Could not find wkhtmltopdf path. Using default.")
WKHTMLTOPDF_PATH = 'wkhtmltopdf'
# Configure wkhtmltopdf
pdf_config = pdfkit.configuration(wkhtmltopdf=WKHTMLTOPDF_PATH)
def load_model():
global model_loaded, load_error, generator
try:
app.logger.info("Starting model loading process")
# Detect device and dtype automatically
dtype = torch.float16 if torch.cuda.is_available() else torch.float32
device = "cuda" if torch.cuda.is_available() else "cpu"
app.logger.info(f"Device set to use {device}")
model = AutoModelForCausalLM.from_pretrained(
"gpt2",
use_safetensors=True,
device_map="auto",
torch_dtype=dtype,
low_cpu_mem_usage=True,
offload_folder="offload"
)
tokenizer = AutoTokenizer.from_pretrained("gpt2")
# Initialize pipeline without explicit device assignment
generator = pipeline(
'text-generation',
model=model,
tokenizer=tokenizer,
torch_dtype=dtype
)
model_loaded = True
app.logger.info(f"Model loaded successfully on {model.device}")
except Exception as e:
load_error = str(e)
app.logger.error(f"Model loading failed: {load_error}", exc_info=True)
# Start model loading in background thread
Thread(target=load_model).start()
# --------------------------------------------------
# IEEE Format Template
# --------------------------------------------------
IEEE_TEMPLATE = """
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>{{ title }}</title>
<style>
@page { margin: 0.75in; }
body {
font-family: 'Times New Roman', Times, serif;
font-size: 12pt;
line-height: 1.5;
}
.header { text-align: center; margin-bottom: 24pt; }
.two-column { column-count: 2; column-gap: 0.5in; }
h1 { font-size: 14pt; margin: 12pt 0; }
h2 { font-size: 12pt; margin: 12pt 0 6pt 0; }
.abstract { margin-bottom: 24pt; }
.keywords { font-weight: bold; margin: 12pt 0; }
.references { margin-top: 24pt; }
.reference-item { text-indent: -0.5in; padding-left: 0.5in; }
</style>
</head>
<body>
<div class="header">
<h1>{{ title }}</h1>
<div class="author-info">
{% for author in authors %}
{{ author.name }}<br>
{% if author.institution %}{{ author.institution }}<br>{% endif %}
{% if author.email %}Email: {{ author.email }}{% endif %}
{% if not loop.last %}<br>{% endif %}
{% endfor %}
</div>
</div>
<div class="abstract">
<h2>Abstract</h2>
{{ abstract }}
<div class="keywords">Keywords— {{ keywords }}</div>
</div>
<div class="two-column">
{% for section in sections %}
<h2>{{ section.title }}</h2>
{{ section.content }}
{% endfor %}
</div>
<div class="references">
<h2>References</h2>
{% for ref in references %}
<div class="reference-item">[{{ loop.index }}] {{ ref }}</div>
{% endfor %}
</div>
</body>
</html>
"""
# --------------------------------------------------
# API Endpoints
# --------------------------------------------------
@app.route('/health', methods=['GET'])
def health_check():
return jsonify({
"status": "ok",
"model_loaded": model_loaded,
"device": "cuda" if torch.cuda.is_available() else "cpu"
}), 200
app.logger.info(f"Health check returning status: {'ready' if model_loaded else 'loading'}, device: {device_info}")
return jsonify({
"status": "ready" if model_loaded else "loading",
"model_loaded": model_loaded,
"device": device_info
}), status_code
@app.route('/generate', methods=['POST'])
def generate_pdf():
# Check model status
if not model_loaded:
app.logger.error("PDF generation requested but model not loaded")
return jsonify({
"error": "Model not loaded yet",
"status": "loading"
}), 503
try:
app.logger.info("Processing PDF generation request")
# Validate input
data = request.json
if not data:
app.logger.error("No data provided in request")
return jsonify({"error": "No data provided"}), 400
required = ['title', 'authors', 'content']
if missing := [field for field in required if field not in data]:
app.logger.error(f"Missing required fields: {missing}")
return jsonify({
"error": f"Missing fields: {', '.join(missing)}"
}), 400
app.logger.info(f"Received request with title: {data['title']}")
# Format content with model
app.logger.info("Formatting content using the model")
formatted = format_content(data['content'])
app.logger.info("Creating HTML from template")
# Generate HTML
html = jinja2.Template(IEEE_TEMPLATE).render(
title=data['title'],
authors=data['authors'],
abstract=formatted.get('abstract', ''),
keywords=', '.join(formatted.get('keywords', [])),
sections=formatted.get('sections', []),
references=formatted.get('references', [])
)
# PDF options
options = {
'page-size': 'Letter',
'margin-top': '0.75in',
'margin-right': '0.75in',
'margin-bottom': '0.75in',
'margin-left': '0.75in',
'encoding': 'UTF-8',
'quiet': ''
}
# Create temporary PDF
app.logger.info("Generating PDF file")
pdf_path = None
try:
with tempfile.NamedTemporaryFile(delete=False, suffix='.pdf') as f:
pdf_path = f.name
# Generate PDF using xvfb-run as a separate process
html_path = pdf_path + '.html'
with open(html_path, 'w', encoding='utf-8') as f:
f.write(html)
command = ['xvfb-run', '-a', WKHTMLTOPDF_PATH] + \
[f'--{k}={v}' for k, v in options.items() if v] + \
[html_path, pdf_path]
app.logger.info(f"Running command: {' '.join(command)}")
result = subprocess.run(command, capture_output=True, text=True)
if result.returncode != 0:
app.logger.error(f"PDF generation command failed: {result.stderr}")
# Fallback to direct pdfkit if available
app.logger.info("Trying fallback PDF generation with pdfkit")
pdfkit.from_string(html, pdf_path, options=options, configuration=pdf_config)
# Clean up HTML file
os.remove(html_path)
app.logger.info(f"PDF generated successfully at {pdf_path}")
return send_file(pdf_path, mimetype='application/pdf', as_attachment=True,
download_name=f"{data['title'].replace(' ', '_')}.pdf")
except Exception as e:
app.logger.error(f"PDF generation failed: {str(e)}", exc_info=True)
raise
except Exception as e:
app.logger.error(f"Request processing failed: {str(e)}", exc_info=True)
return jsonify({"error": str(e)}), 500
finally:
# Clean up temporary file
if 'pdf_path' in locals() and pdf_path:
try:
app.logger.info(f"Cleaning up temporary file {pdf_path}")
os.remove(pdf_path)
except Exception as e:
app.logger.warning(f"Failed to remove temporary file: {str(e)}")
# --------------------------------------------------
# Content Formatting
# --------------------------------------------------
def parse_formatted_content(text):
"""Parse the generated text into structured sections"""
app.logger.info("Parsing formatted content")
try:
lines = text.split('\n')
# Default structure
result = {
'abstract': '',
'keywords': ['IEEE', 'format', 'research', 'paper'],
'sections': [],
'references': []
}
# Extract abstract (simple approach - first paragraph after "Abstract")
abstract_start = None
for i, line in enumerate(lines):
if line.strip().lower() == 'abstract':
abstract_start = i + 1
break
if abstract_start:
abstract_text = []
i = abstract_start
while i < len(lines) and not lines[i].strip().lower().startswith('keyword'):
if lines[i].strip():
abstract_text.append(lines[i].strip())
i += 1
result['abstract'] = ' '.join(abstract_text)
# Extract keywords
for line in lines:
if line.strip().lower().startswith('keyword'):
# Extract keywords from the line
keyword_parts = line.split('—')
if len(keyword_parts) > 1:
keywords = keyword_parts[1].strip().split(',')
result['keywords'] = [k.strip() for k in keywords if k.strip()]
break
# Extract sections
current_section = None
section_content = []
# Skip lines until we find a section heading
started = False
for line in lines:
# Very basic heuristic for Roman numerals section headings
if line.strip() and (line.strip()[0].isupper() or line.strip()[0].isdigit()):
started = True
if not started:
continue
if line.strip() and (line.strip()[0].isupper() or line.strip()[0].isdigit()) and len(line.strip().split()) <= 6:
# This is likely a section heading
if current_section:
# Save the previous section
result['sections'].append({
'title': current_section,
'content': '\n'.join(section_content)
})
section_content = []
current_section = line.strip()
elif current_section and line.strip().lower() == 'references':
# We've reached the references section
if current_section:
# Save the last section
result['sections'].append({
'title': current_section,
'content': '\n'.join(section_content)
})
break
elif current_section:
# Add to current section content
section_content.append(line)
# Extract references
in_references = False
for line in lines:
if line.strip().lower() == 'references':
in_references = True
continue
if in_references and line.strip():
result['references'].append(line.strip())
app.logger.info(f"Content parsed into {len(result['sections'])} sections and {len(result['references'])} references")
return result
except Exception as e:
app.logger.error(f"Error parsing formatted content: {str(e)}", exc_info=True)
# Return a basic structure if parsing fails
return {
'abstract': 'Error parsing content.',
'keywords': ['IEEE', 'format'],
'sections': [{'title': 'Content', 'content': text}],
'references': []
}
def format_content(content):
"""Format the content using the ML model"""
try:
app.logger.info("Formatting content with ML model")
prompt = f"Format this research content to IEEE standards with sections, abstract, and references:\n\n{str(content)}"
response = generator(
prompt,
max_new_tokens=1024, # Increased for more complete generation
temperature=0.5, # More deterministic output
do_sample=True,
truncation=True,
num_return_sequences=1
)
generated_text = response[0]['generated_text']
# Remove the prompt from the generated text
if prompt in generated_text:
formatted_text = generated_text[len(prompt):].strip()
else:
formatted_text = generated_text
app.logger.info("Content formatted successfully")
# Parse the formatted text into structured sections
return parse_formatted_content(formatted_text)
except Exception as e:
app.logger.error(f"Error formatting content: {str(e)}", exc_info=True)
# Return the original content if formatting fails
return {
'abstract': 'Content processing error.',
'keywords': ['IEEE', 'format'],
'sections': [{'title': 'Content', 'content': str(content)}],
'references': []
}
if __name__ == '__main__':
app.run(host='0.0.0.0', port=5000) |