vace-demo / vace /vace_wan_inference.py
maffia's picture
Upload 94 files
690f890 verified
# -*- coding: utf-8 -*-
# Copyright (c) Alibaba, Inc. and its affiliates.
import argparse
import time
from datetime import datetime
import logging
import os
import sys
import warnings
warnings.filterwarnings('ignore')
import torch, random
import torch.distributed as dist
from PIL import Image
import wan
from wan.utils.utils import cache_video, cache_image, str2bool
from models.wan import WanVace
from models.wan.configs import WAN_CONFIGS, SIZE_CONFIGS, MAX_AREA_CONFIGS, SUPPORTED_SIZES
from annotators.utils import get_annotator
EXAMPLE_PROMPT = {
"vace-1.3B": {
"src_ref_images": './bag.jpg,./heben.png',
"prompt": "优雅的女士在精品店仔细挑选包包,她身穿一袭黑色修身连衣裙,搭配珍珠项链,展现出成熟女性的魅力。手中拿着一款复古风格的棕色皮质半月形手提包,正细致地观察其工艺与质地。店内灯光柔和,木质装潢营造出温馨而高级的氛围。中景,侧拍捕捉女士挑选瞬间,展现其品味与气质。"
}
}
def validate_args(args):
# Basic check
assert args.ckpt_dir is not None, "Please specify the checkpoint directory."
assert args.model_name in WAN_CONFIGS, f"Unsupport model name: {args.model_name}"
assert args.model_name in EXAMPLE_PROMPT, f"Unsupport model name: {args.model_name}"
# The default sampling steps are 40 for image-to-video tasks and 50 for text-to-video tasks.
if args.sample_steps is None:
args.sample_steps = 25
if args.sample_shift is None:
args.sample_shift = 8.0
# The default number of frames are 1 for text-to-image tasks and 81 for other tasks.
if args.frame_num is None:
args.frame_num = 81
args.base_seed = args.base_seed if args.base_seed >= 0 else random.randint(
0, sys.maxsize)
# Size check
assert args.size in SUPPORTED_SIZES[
args.model_name], f"Unsupport size {args.size} for model name {args.model_name}, supported sizes are: {', '.join(SUPPORTED_SIZES[args.model_name])}"
return args
def get_parser():
parser = argparse.ArgumentParser(
description="Generate a image or video from a text prompt or image using Wan"
)
parser.add_argument(
"--model_name",
type=str,
default="vace-1.3B",
choices=list(WAN_CONFIGS.keys()),
help="The model name to run.")
parser.add_argument(
"--size",
type=str,
default="480*832",
choices=list(SIZE_CONFIGS.keys()),
help="The area (width*height) of the generated video. For the I2V task, the aspect ratio of the output video will follow that of the input image."
)
parser.add_argument(
"--frame_num",
type=int,
default=81,
help="How many frames to sample from a image or video. The number should be 4n+1"
)
parser.add_argument(
"--ckpt_dir",
type=str,
default='models/VACE-Wan2.1-1.3B-Preview',
help="The path to the checkpoint directory.")
parser.add_argument(
"--offload_model",
type=str2bool,
default=None,
help="Whether to offload the model to CPU after each model forward, reducing GPU memory usage."
)
parser.add_argument(
"--ulysses_size",
type=int,
default=1,
help="The size of the ulysses parallelism in DiT.")
parser.add_argument(
"--ring_size",
type=int,
default=1,
help="The size of the ring attention parallelism in DiT.")
parser.add_argument(
"--t5_fsdp",
action="store_true",
default=False,
help="Whether to use FSDP for T5.")
parser.add_argument(
"--t5_cpu",
action="store_true",
default=False,
help="Whether to place T5 model on CPU.")
parser.add_argument(
"--dit_fsdp",
action="store_true",
default=False,
help="Whether to use FSDP for DiT.")
parser.add_argument(
"--save_dir",
type=str,
default=None,
help="The file to save the generated image or video to.")
parser.add_argument(
"--src_video",
type=str,
default=None,
help="The file of the source video. Default None.")
parser.add_argument(
"--src_mask",
type=str,
default=None,
help="The file of the source mask. Default None.")
parser.add_argument(
"--src_ref_images",
type=str,
default=None,
help="The file list of the source reference images. Separated by ','. Default None.")
parser.add_argument(
"--prompt",
type=str,
default=None,
help="The prompt to generate the image or video from.")
parser.add_argument(
"--use_prompt_extend",
default='plain',
choices=['plain', 'wan_zh', 'wan_en', 'wan_zh_ds', 'wan_en_ds'],
help="Whether to use prompt extend.")
parser.add_argument(
"--base_seed",
type=int,
default=2025,
help="The seed to use for generating the image or video.")
parser.add_argument(
"--sample_solver",
type=str,
default='unipc',
choices=['unipc', 'dpm++'],
help="The solver used to sample.")
parser.add_argument(
"--sample_steps", type=int, default=None, help="The sampling steps.")
parser.add_argument(
"--sample_shift",
type=float,
default=None,
help="Sampling shift factor for flow matching schedulers.")
parser.add_argument(
"--sample_guide_scale",
type=float,
default=6.0,
help="Classifier free guidance scale.")
return parser
def _init_logging(rank):
# logging
if rank == 0:
# set format
logging.basicConfig(
level=logging.INFO,
format="[%(asctime)s] %(levelname)s: %(message)s",
handlers=[logging.StreamHandler(stream=sys.stdout)])
else:
logging.basicConfig(level=logging.ERROR)
def main(args):
args = argparse.Namespace(**args) if isinstance(args, dict) else args
args = validate_args(args)
rank = int(os.getenv("RANK", 0))
world_size = int(os.getenv("WORLD_SIZE", 1))
local_rank = int(os.getenv("LOCAL_RANK", 0))
device = local_rank
_init_logging(rank)
if args.offload_model is None:
args.offload_model = False if world_size > 1 else True
logging.info(
f"offload_model is not specified, set to {args.offload_model}.")
if world_size > 1:
torch.cuda.set_device(local_rank)
dist.init_process_group(
backend="nccl",
init_method="env://",
rank=rank,
world_size=world_size)
else:
assert not (
args.t5_fsdp or args.dit_fsdp
), f"t5_fsdp and dit_fsdp are not supported in non-distributed environments."
assert not (
args.ulysses_size > 1 or args.ring_size > 1
), f"context parallel are not supported in non-distributed environments."
if args.ulysses_size > 1 or args.ring_size > 1:
assert args.ulysses_size * args.ring_size == world_size, f"The number of ulysses_size and ring_size should be equal to the world size."
from xfuser.core.distributed import (initialize_model_parallel,
init_distributed_environment)
init_distributed_environment(
rank=dist.get_rank(), world_size=dist.get_world_size())
initialize_model_parallel(
sequence_parallel_degree=dist.get_world_size(),
ring_degree=args.ring_size,
ulysses_degree=args.ulysses_size,
)
if args.use_prompt_extend and args.use_prompt_extend != 'plain':
prompt_expander = get_annotator(config_type='prompt', config_task=args.use_prompt_extend, return_dict=False)
cfg = WAN_CONFIGS[args.model_name]
if args.ulysses_size > 1:
assert cfg.num_heads % args.ulysses_size == 0, f"`num_heads` must be divisible by `ulysses_size`."
logging.info(f"Generation job args: {args}")
logging.info(f"Generation model config: {cfg}")
if dist.is_initialized():
base_seed = [args.base_seed] if rank == 0 else [None]
dist.broadcast_object_list(base_seed, src=0)
args.base_seed = base_seed[0]
if args.prompt is None:
args.prompt = EXAMPLE_PROMPT[args.model_name]["prompt"]
args.src_video = EXAMPLE_PROMPT[args.model_name].get("src_video", None)
args.src_mask = EXAMPLE_PROMPT[args.model_name].get("src_mask", None)
args.src_ref_images = EXAMPLE_PROMPT[args.model_name].get("src_ref_images", None)
logging.info(f"Input prompt: {args.prompt}")
if args.use_prompt_extend and args.use_prompt_extend != 'plain':
logging.info("Extending prompt ...")
if rank == 0:
prompt = prompt_expander.forward(args.prompt)
logging.info(f"Prompt extended from '{args.prompt}' to '{prompt}'")
input_prompt = [prompt]
else:
input_prompt = [None]
if dist.is_initialized():
dist.broadcast_object_list(input_prompt, src=0)
args.prompt = input_prompt[0]
logging.info(f"Extended prompt: {args.prompt}")
logging.info("Creating WanT2V pipeline.")
wan_vace = WanVace(
config=cfg,
checkpoint_dir=args.ckpt_dir,
device_id=device,
rank=rank,
t5_fsdp=args.t5_fsdp,
dit_fsdp=args.dit_fsdp,
use_usp=(args.ulysses_size > 1 or args.ring_size > 1),
t5_cpu=args.t5_cpu,
)
src_video, src_mask, src_ref_images = wan_vace.prepare_source([args.src_video],
[args.src_mask],
[None if args.src_ref_images is None else args.src_ref_images.split(',')],
args.frame_num, SIZE_CONFIGS[args.size], device)
logging.info(f"Generating video...")
video = wan_vace.generate(
args.prompt,
src_video,
src_mask,
src_ref_images,
size=SIZE_CONFIGS[args.size],
frame_num=args.frame_num,
shift=args.sample_shift,
sample_solver=args.sample_solver,
sampling_steps=args.sample_steps,
guide_scale=args.sample_guide_scale,
seed=args.base_seed,
offload_model=args.offload_model)
ret_data = {}
if rank == 0:
if args.save_dir is None:
save_dir = os.path.join('results', 'vace_wan_1.3b', time.strftime('%Y-%m-%d-%H-%M-%S', time.localtime(time.time())))
else:
save_dir = args.save_dir
if not os.path.exists(save_dir):
os.makedirs(save_dir)
save_file = os.path.join(save_dir, 'out_video.mp4')
cache_video(
tensor=video[None],
save_file=save_file,
fps=cfg.sample_fps,
nrow=1,
normalize=True,
value_range=(-1, 1))
logging.info(f"Saving generated video to {save_file}")
ret_data['out_video'] = save_file
save_file = os.path.join(save_dir, 'src_video.mp4')
cache_video(
tensor=src_video[0][None],
save_file=save_file,
fps=cfg.sample_fps,
nrow=1,
normalize=True,
value_range=(-1, 1))
logging.info(f"Saving src_video to {save_file}")
ret_data['src_video'] = save_file
save_file = os.path.join(save_dir, 'src_mask.mp4')
cache_video(
tensor=src_mask[0][None],
save_file=save_file,
fps=cfg.sample_fps,
nrow=1,
normalize=True,
value_range=(0, 1))
logging.info(f"Saving src_mask to {save_file}")
ret_data['src_mask'] = save_file
if src_ref_images[0] is not None:
for i, ref_img in enumerate(src_ref_images[0]):
save_file = os.path.join(save_dir, f'src_ref_image_{i}.png')
cache_image(
tensor=ref_img[:, 0, ...],
save_file=save_file,
nrow=1,
normalize=True,
value_range=(-1, 1))
logging.info(f"Saving src_ref_image_{i} to {save_file}")
ret_data[f'src_ref_image_{i}'] = save_file
logging.info("Finished.")
return ret_data
if __name__ == "__main__":
args = get_parser().parse_args()
main(args)