File size: 12,607 Bytes
690f890
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
# -*- coding: utf-8 -*-
# Copyright (c) Alibaba, Inc. and its affiliates.

import argparse
import time
from datetime import datetime
import logging
import os
import sys
import warnings

warnings.filterwarnings('ignore')

import torch, random
import torch.distributed as dist
from PIL import Image

import wan
from wan.utils.utils import cache_video, cache_image, str2bool

from models.wan import WanVace
from models.wan.configs import WAN_CONFIGS, SIZE_CONFIGS, MAX_AREA_CONFIGS, SUPPORTED_SIZES
from annotators.utils import get_annotator

EXAMPLE_PROMPT = {
    "vace-1.3B": {
        "src_ref_images": './bag.jpg,./heben.png',
        "prompt": "优雅的女士在精品店仔细挑选包包,她身穿一袭黑色修身连衣裙,搭配珍珠项链,展现出成熟女性的魅力。手中拿着一款复古风格的棕色皮质半月形手提包,正细致地观察其工艺与质地。店内灯光柔和,木质装潢营造出温馨而高级的氛围。中景,侧拍捕捉女士挑选瞬间,展现其品味与气质。"
    }
}


def validate_args(args):
    # Basic check
    assert args.ckpt_dir is not None, "Please specify the checkpoint directory."
    assert args.model_name in WAN_CONFIGS, f"Unsupport model name: {args.model_name}"
    assert args.model_name in EXAMPLE_PROMPT, f"Unsupport model name: {args.model_name}"

    # The default sampling steps are 40 for image-to-video tasks and 50 for text-to-video tasks.
    if args.sample_steps is None:
        args.sample_steps = 25

    if args.sample_shift is None:
        args.sample_shift = 8.0

    # The default number of frames are 1 for text-to-image tasks and 81 for other tasks.
    if args.frame_num is None:
        args.frame_num = 81

    args.base_seed = args.base_seed if args.base_seed >= 0 else random.randint(
        0, sys.maxsize)
    # Size check
    assert args.size in SUPPORTED_SIZES[
        args.model_name], f"Unsupport size {args.size} for model name {args.model_name}, supported sizes are: {', '.join(SUPPORTED_SIZES[args.model_name])}"
    return args


def get_parser():
    parser = argparse.ArgumentParser(
        description="Generate a image or video from a text prompt or image using Wan"
    )
    parser.add_argument(
        "--model_name",
        type=str,
        default="vace-1.3B",
        choices=list(WAN_CONFIGS.keys()),
        help="The model name to run.")
    parser.add_argument(
        "--size",
        type=str,
        default="480*832",
        choices=list(SIZE_CONFIGS.keys()),
        help="The area (width*height) of the generated video. For the I2V task, the aspect ratio of the output video will follow that of the input image."
    )
    parser.add_argument(
        "--frame_num",
        type=int,
        default=81,
        help="How many frames to sample from a image or video. The number should be 4n+1"
    )
    parser.add_argument(
        "--ckpt_dir",
        type=str,
        default='models/VACE-Wan2.1-1.3B-Preview',
        help="The path to the checkpoint directory.")
    parser.add_argument(
        "--offload_model",
        type=str2bool,
        default=None,
        help="Whether to offload the model to CPU after each model forward, reducing GPU memory usage."
    )
    parser.add_argument(
        "--ulysses_size",
        type=int,
        default=1,
        help="The size of the ulysses parallelism in DiT.")
    parser.add_argument(
        "--ring_size",
        type=int,
        default=1,
        help="The size of the ring attention parallelism in DiT.")
    parser.add_argument(
        "--t5_fsdp",
        action="store_true",
        default=False,
        help="Whether to use FSDP for T5.")
    parser.add_argument(
        "--t5_cpu",
        action="store_true",
        default=False,
        help="Whether to place T5 model on CPU.")
    parser.add_argument(
        "--dit_fsdp",
        action="store_true",
        default=False,
        help="Whether to use FSDP for DiT.")
    parser.add_argument(
        "--save_dir",
        type=str,
        default=None,
        help="The file to save the generated image or video to.")
    parser.add_argument(
        "--src_video",
        type=str,
        default=None,
        help="The file of the source video. Default None.")
    parser.add_argument(
        "--src_mask",
        type=str,
        default=None,
        help="The file of the source mask. Default None.")
    parser.add_argument(
        "--src_ref_images",
        type=str,
        default=None,
        help="The file list of the source reference images. Separated by ','. Default None.")
    parser.add_argument(
        "--prompt",
        type=str,
        default=None,
        help="The prompt to generate the image or video from.")
    parser.add_argument(
        "--use_prompt_extend",
        default='plain',
        choices=['plain', 'wan_zh', 'wan_en', 'wan_zh_ds', 'wan_en_ds'],
        help="Whether to use prompt extend.")
    parser.add_argument(
        "--base_seed",
        type=int,
        default=2025,
        help="The seed to use for generating the image or video.")
    parser.add_argument(
        "--sample_solver",
        type=str,
        default='unipc',
        choices=['unipc', 'dpm++'],
        help="The solver used to sample.")
    parser.add_argument(
        "--sample_steps", type=int, default=None, help="The sampling steps.")
    parser.add_argument(
        "--sample_shift",
        type=float,
        default=None,
        help="Sampling shift factor for flow matching schedulers.")
    parser.add_argument(
        "--sample_guide_scale",
        type=float,
        default=6.0,
        help="Classifier free guidance scale.")
    return parser


def _init_logging(rank):
    # logging
    if rank == 0:
        # set format
        logging.basicConfig(
            level=logging.INFO,
            format="[%(asctime)s] %(levelname)s: %(message)s",
            handlers=[logging.StreamHandler(stream=sys.stdout)])
    else:
        logging.basicConfig(level=logging.ERROR)


def main(args):
    args = argparse.Namespace(**args) if isinstance(args, dict) else args
    args = validate_args(args)

    rank = int(os.getenv("RANK", 0))
    world_size = int(os.getenv("WORLD_SIZE", 1))
    local_rank = int(os.getenv("LOCAL_RANK", 0))
    device = local_rank
    _init_logging(rank)

    if args.offload_model is None:
        args.offload_model = False if world_size > 1 else True
        logging.info(
            f"offload_model is not specified, set to {args.offload_model}.")
    if world_size > 1:
        torch.cuda.set_device(local_rank)
        dist.init_process_group(
            backend="nccl",
            init_method="env://",
            rank=rank,
            world_size=world_size)
    else:
        assert not (
            args.t5_fsdp or args.dit_fsdp
        ), f"t5_fsdp and dit_fsdp are not supported in non-distributed environments."
        assert not (
            args.ulysses_size > 1 or args.ring_size > 1
        ), f"context parallel are not supported in non-distributed environments."

    if args.ulysses_size > 1 or args.ring_size > 1:
        assert args.ulysses_size * args.ring_size == world_size, f"The number of ulysses_size and ring_size should be equal to the world size."
        from xfuser.core.distributed import (initialize_model_parallel,
                                             init_distributed_environment)
        init_distributed_environment(
            rank=dist.get_rank(), world_size=dist.get_world_size())

        initialize_model_parallel(
            sequence_parallel_degree=dist.get_world_size(),
            ring_degree=args.ring_size,
            ulysses_degree=args.ulysses_size,
        )

    if args.use_prompt_extend and args.use_prompt_extend != 'plain':
        prompt_expander = get_annotator(config_type='prompt', config_task=args.use_prompt_extend, return_dict=False)

    cfg = WAN_CONFIGS[args.model_name]
    if args.ulysses_size > 1:
        assert cfg.num_heads % args.ulysses_size == 0, f"`num_heads` must be divisible by `ulysses_size`."

    logging.info(f"Generation job args: {args}")
    logging.info(f"Generation model config: {cfg}")

    if dist.is_initialized():
        base_seed = [args.base_seed] if rank == 0 else [None]
        dist.broadcast_object_list(base_seed, src=0)
        args.base_seed = base_seed[0]

    if args.prompt is None:
        args.prompt = EXAMPLE_PROMPT[args.model_name]["prompt"]
        args.src_video = EXAMPLE_PROMPT[args.model_name].get("src_video", None)
        args.src_mask = EXAMPLE_PROMPT[args.model_name].get("src_mask", None)
        args.src_ref_images = EXAMPLE_PROMPT[args.model_name].get("src_ref_images", None)

    logging.info(f"Input prompt: {args.prompt}")
    if args.use_prompt_extend and args.use_prompt_extend != 'plain':
        logging.info("Extending prompt ...")
        if rank == 0:
            prompt = prompt_expander.forward(args.prompt)
            logging.info(f"Prompt extended from '{args.prompt}' to '{prompt}'")
            input_prompt = [prompt]
        else:
            input_prompt = [None]
        if dist.is_initialized():
            dist.broadcast_object_list(input_prompt, src=0)
        args.prompt = input_prompt[0]
        logging.info(f"Extended prompt: {args.prompt}")

    logging.info("Creating WanT2V pipeline.")
    wan_vace = WanVace(
        config=cfg,
        checkpoint_dir=args.ckpt_dir,
        device_id=device,
        rank=rank,
        t5_fsdp=args.t5_fsdp,
        dit_fsdp=args.dit_fsdp,
        use_usp=(args.ulysses_size > 1 or args.ring_size > 1),
        t5_cpu=args.t5_cpu,
    )

    src_video, src_mask, src_ref_images = wan_vace.prepare_source([args.src_video],
                                                                  [args.src_mask],
                                                                  [None if args.src_ref_images is None else args.src_ref_images.split(',')],
                                                                  args.frame_num, SIZE_CONFIGS[args.size], device)

    logging.info(f"Generating video...")
    video = wan_vace.generate(
        args.prompt,
        src_video,
        src_mask,
        src_ref_images,
        size=SIZE_CONFIGS[args.size],
        frame_num=args.frame_num,
        shift=args.sample_shift,
        sample_solver=args.sample_solver,
        sampling_steps=args.sample_steps,
        guide_scale=args.sample_guide_scale,
        seed=args.base_seed,
        offload_model=args.offload_model)

    ret_data = {}
    if rank == 0:
        if args.save_dir is None:
            save_dir = os.path.join('results', 'vace_wan_1.3b', time.strftime('%Y-%m-%d-%H-%M-%S', time.localtime(time.time())))
        else:
            save_dir = args.save_dir
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)

        save_file = os.path.join(save_dir, 'out_video.mp4')
        cache_video(
            tensor=video[None],
            save_file=save_file,
            fps=cfg.sample_fps,
            nrow=1,
            normalize=True,
            value_range=(-1, 1))
        logging.info(f"Saving generated video to {save_file}")
        ret_data['out_video'] = save_file

        save_file = os.path.join(save_dir, 'src_video.mp4')
        cache_video(
            tensor=src_video[0][None],
            save_file=save_file,
            fps=cfg.sample_fps,
            nrow=1,
            normalize=True,
            value_range=(-1, 1))
        logging.info(f"Saving src_video to {save_file}")
        ret_data['src_video'] = save_file

        save_file = os.path.join(save_dir, 'src_mask.mp4')
        cache_video(
            tensor=src_mask[0][None],
            save_file=save_file,
            fps=cfg.sample_fps,
            nrow=1,
            normalize=True,
            value_range=(0, 1))
        logging.info(f"Saving src_mask to {save_file}")
        ret_data['src_mask'] = save_file

        if src_ref_images[0] is not None:
            for i, ref_img in enumerate(src_ref_images[0]):
                save_file = os.path.join(save_dir, f'src_ref_image_{i}.png')
                cache_image(
                    tensor=ref_img[:, 0, ...],
                    save_file=save_file,
                    nrow=1,
                    normalize=True,
                    value_range=(-1, 1))
                logging.info(f"Saving src_ref_image_{i} to {save_file}")
                ret_data[f'src_ref_image_{i}'] = save_file
    logging.info("Finished.")
    return ret_data


if __name__ == "__main__":
    args = get_parser().parse_args()
    main(args)