File size: 12,607 Bytes
690f890 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 |
# -*- coding: utf-8 -*-
# Copyright (c) Alibaba, Inc. and its affiliates.
import argparse
import time
from datetime import datetime
import logging
import os
import sys
import warnings
warnings.filterwarnings('ignore')
import torch, random
import torch.distributed as dist
from PIL import Image
import wan
from wan.utils.utils import cache_video, cache_image, str2bool
from models.wan import WanVace
from models.wan.configs import WAN_CONFIGS, SIZE_CONFIGS, MAX_AREA_CONFIGS, SUPPORTED_SIZES
from annotators.utils import get_annotator
EXAMPLE_PROMPT = {
"vace-1.3B": {
"src_ref_images": './bag.jpg,./heben.png',
"prompt": "优雅的女士在精品店仔细挑选包包,她身穿一袭黑色修身连衣裙,搭配珍珠项链,展现出成熟女性的魅力。手中拿着一款复古风格的棕色皮质半月形手提包,正细致地观察其工艺与质地。店内灯光柔和,木质装潢营造出温馨而高级的氛围。中景,侧拍捕捉女士挑选瞬间,展现其品味与气质。"
}
}
def validate_args(args):
# Basic check
assert args.ckpt_dir is not None, "Please specify the checkpoint directory."
assert args.model_name in WAN_CONFIGS, f"Unsupport model name: {args.model_name}"
assert args.model_name in EXAMPLE_PROMPT, f"Unsupport model name: {args.model_name}"
# The default sampling steps are 40 for image-to-video tasks and 50 for text-to-video tasks.
if args.sample_steps is None:
args.sample_steps = 25
if args.sample_shift is None:
args.sample_shift = 8.0
# The default number of frames are 1 for text-to-image tasks and 81 for other tasks.
if args.frame_num is None:
args.frame_num = 81
args.base_seed = args.base_seed if args.base_seed >= 0 else random.randint(
0, sys.maxsize)
# Size check
assert args.size in SUPPORTED_SIZES[
args.model_name], f"Unsupport size {args.size} for model name {args.model_name}, supported sizes are: {', '.join(SUPPORTED_SIZES[args.model_name])}"
return args
def get_parser():
parser = argparse.ArgumentParser(
description="Generate a image or video from a text prompt or image using Wan"
)
parser.add_argument(
"--model_name",
type=str,
default="vace-1.3B",
choices=list(WAN_CONFIGS.keys()),
help="The model name to run.")
parser.add_argument(
"--size",
type=str,
default="480*832",
choices=list(SIZE_CONFIGS.keys()),
help="The area (width*height) of the generated video. For the I2V task, the aspect ratio of the output video will follow that of the input image."
)
parser.add_argument(
"--frame_num",
type=int,
default=81,
help="How many frames to sample from a image or video. The number should be 4n+1"
)
parser.add_argument(
"--ckpt_dir",
type=str,
default='models/VACE-Wan2.1-1.3B-Preview',
help="The path to the checkpoint directory.")
parser.add_argument(
"--offload_model",
type=str2bool,
default=None,
help="Whether to offload the model to CPU after each model forward, reducing GPU memory usage."
)
parser.add_argument(
"--ulysses_size",
type=int,
default=1,
help="The size of the ulysses parallelism in DiT.")
parser.add_argument(
"--ring_size",
type=int,
default=1,
help="The size of the ring attention parallelism in DiT.")
parser.add_argument(
"--t5_fsdp",
action="store_true",
default=False,
help="Whether to use FSDP for T5.")
parser.add_argument(
"--t5_cpu",
action="store_true",
default=False,
help="Whether to place T5 model on CPU.")
parser.add_argument(
"--dit_fsdp",
action="store_true",
default=False,
help="Whether to use FSDP for DiT.")
parser.add_argument(
"--save_dir",
type=str,
default=None,
help="The file to save the generated image or video to.")
parser.add_argument(
"--src_video",
type=str,
default=None,
help="The file of the source video. Default None.")
parser.add_argument(
"--src_mask",
type=str,
default=None,
help="The file of the source mask. Default None.")
parser.add_argument(
"--src_ref_images",
type=str,
default=None,
help="The file list of the source reference images. Separated by ','. Default None.")
parser.add_argument(
"--prompt",
type=str,
default=None,
help="The prompt to generate the image or video from.")
parser.add_argument(
"--use_prompt_extend",
default='plain',
choices=['plain', 'wan_zh', 'wan_en', 'wan_zh_ds', 'wan_en_ds'],
help="Whether to use prompt extend.")
parser.add_argument(
"--base_seed",
type=int,
default=2025,
help="The seed to use for generating the image or video.")
parser.add_argument(
"--sample_solver",
type=str,
default='unipc',
choices=['unipc', 'dpm++'],
help="The solver used to sample.")
parser.add_argument(
"--sample_steps", type=int, default=None, help="The sampling steps.")
parser.add_argument(
"--sample_shift",
type=float,
default=None,
help="Sampling shift factor for flow matching schedulers.")
parser.add_argument(
"--sample_guide_scale",
type=float,
default=6.0,
help="Classifier free guidance scale.")
return parser
def _init_logging(rank):
# logging
if rank == 0:
# set format
logging.basicConfig(
level=logging.INFO,
format="[%(asctime)s] %(levelname)s: %(message)s",
handlers=[logging.StreamHandler(stream=sys.stdout)])
else:
logging.basicConfig(level=logging.ERROR)
def main(args):
args = argparse.Namespace(**args) if isinstance(args, dict) else args
args = validate_args(args)
rank = int(os.getenv("RANK", 0))
world_size = int(os.getenv("WORLD_SIZE", 1))
local_rank = int(os.getenv("LOCAL_RANK", 0))
device = local_rank
_init_logging(rank)
if args.offload_model is None:
args.offload_model = False if world_size > 1 else True
logging.info(
f"offload_model is not specified, set to {args.offload_model}.")
if world_size > 1:
torch.cuda.set_device(local_rank)
dist.init_process_group(
backend="nccl",
init_method="env://",
rank=rank,
world_size=world_size)
else:
assert not (
args.t5_fsdp or args.dit_fsdp
), f"t5_fsdp and dit_fsdp are not supported in non-distributed environments."
assert not (
args.ulysses_size > 1 or args.ring_size > 1
), f"context parallel are not supported in non-distributed environments."
if args.ulysses_size > 1 or args.ring_size > 1:
assert args.ulysses_size * args.ring_size == world_size, f"The number of ulysses_size and ring_size should be equal to the world size."
from xfuser.core.distributed import (initialize_model_parallel,
init_distributed_environment)
init_distributed_environment(
rank=dist.get_rank(), world_size=dist.get_world_size())
initialize_model_parallel(
sequence_parallel_degree=dist.get_world_size(),
ring_degree=args.ring_size,
ulysses_degree=args.ulysses_size,
)
if args.use_prompt_extend and args.use_prompt_extend != 'plain':
prompt_expander = get_annotator(config_type='prompt', config_task=args.use_prompt_extend, return_dict=False)
cfg = WAN_CONFIGS[args.model_name]
if args.ulysses_size > 1:
assert cfg.num_heads % args.ulysses_size == 0, f"`num_heads` must be divisible by `ulysses_size`."
logging.info(f"Generation job args: {args}")
logging.info(f"Generation model config: {cfg}")
if dist.is_initialized():
base_seed = [args.base_seed] if rank == 0 else [None]
dist.broadcast_object_list(base_seed, src=0)
args.base_seed = base_seed[0]
if args.prompt is None:
args.prompt = EXAMPLE_PROMPT[args.model_name]["prompt"]
args.src_video = EXAMPLE_PROMPT[args.model_name].get("src_video", None)
args.src_mask = EXAMPLE_PROMPT[args.model_name].get("src_mask", None)
args.src_ref_images = EXAMPLE_PROMPT[args.model_name].get("src_ref_images", None)
logging.info(f"Input prompt: {args.prompt}")
if args.use_prompt_extend and args.use_prompt_extend != 'plain':
logging.info("Extending prompt ...")
if rank == 0:
prompt = prompt_expander.forward(args.prompt)
logging.info(f"Prompt extended from '{args.prompt}' to '{prompt}'")
input_prompt = [prompt]
else:
input_prompt = [None]
if dist.is_initialized():
dist.broadcast_object_list(input_prompt, src=0)
args.prompt = input_prompt[0]
logging.info(f"Extended prompt: {args.prompt}")
logging.info("Creating WanT2V pipeline.")
wan_vace = WanVace(
config=cfg,
checkpoint_dir=args.ckpt_dir,
device_id=device,
rank=rank,
t5_fsdp=args.t5_fsdp,
dit_fsdp=args.dit_fsdp,
use_usp=(args.ulysses_size > 1 or args.ring_size > 1),
t5_cpu=args.t5_cpu,
)
src_video, src_mask, src_ref_images = wan_vace.prepare_source([args.src_video],
[args.src_mask],
[None if args.src_ref_images is None else args.src_ref_images.split(',')],
args.frame_num, SIZE_CONFIGS[args.size], device)
logging.info(f"Generating video...")
video = wan_vace.generate(
args.prompt,
src_video,
src_mask,
src_ref_images,
size=SIZE_CONFIGS[args.size],
frame_num=args.frame_num,
shift=args.sample_shift,
sample_solver=args.sample_solver,
sampling_steps=args.sample_steps,
guide_scale=args.sample_guide_scale,
seed=args.base_seed,
offload_model=args.offload_model)
ret_data = {}
if rank == 0:
if args.save_dir is None:
save_dir = os.path.join('results', 'vace_wan_1.3b', time.strftime('%Y-%m-%d-%H-%M-%S', time.localtime(time.time())))
else:
save_dir = args.save_dir
if not os.path.exists(save_dir):
os.makedirs(save_dir)
save_file = os.path.join(save_dir, 'out_video.mp4')
cache_video(
tensor=video[None],
save_file=save_file,
fps=cfg.sample_fps,
nrow=1,
normalize=True,
value_range=(-1, 1))
logging.info(f"Saving generated video to {save_file}")
ret_data['out_video'] = save_file
save_file = os.path.join(save_dir, 'src_video.mp4')
cache_video(
tensor=src_video[0][None],
save_file=save_file,
fps=cfg.sample_fps,
nrow=1,
normalize=True,
value_range=(-1, 1))
logging.info(f"Saving src_video to {save_file}")
ret_data['src_video'] = save_file
save_file = os.path.join(save_dir, 'src_mask.mp4')
cache_video(
tensor=src_mask[0][None],
save_file=save_file,
fps=cfg.sample_fps,
nrow=1,
normalize=True,
value_range=(0, 1))
logging.info(f"Saving src_mask to {save_file}")
ret_data['src_mask'] = save_file
if src_ref_images[0] is not None:
for i, ref_img in enumerate(src_ref_images[0]):
save_file = os.path.join(save_dir, f'src_ref_image_{i}.png')
cache_image(
tensor=ref_img[:, 0, ...],
save_file=save_file,
nrow=1,
normalize=True,
value_range=(-1, 1))
logging.info(f"Saving src_ref_image_{i} to {save_file}")
ret_data[f'src_ref_image_{i}'] = save_file
logging.info("Finished.")
return ret_data
if __name__ == "__main__":
args = get_parser().parse_args()
main(args)
|