hellohf / app.py
lisonallen's picture
Switch to API-based image generation for better compatibility with Hugging Face Spaces
ae398e9
import gradio as gr
import numpy as np
import random
import logging
import sys
import os
import requests
import io
import json
import base64
from PIL import Image as PILImage
# 设置日志记录
logging.basicConfig(level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
stream=sys.stdout)
logger = logging.getLogger(__name__)
# 补丁修复 Gradio JSON Schema 错误
try:
import gradio_client.utils
# 保存原始函数
original_get_type = gradio_client.utils.get_type
# 创建新的 get_type 函数,处理布尔值
def patched_get_type(schema):
if schema is True or schema is False or schema is None:
return "any"
if not isinstance(schema, dict):
return "any"
return original_get_type(schema)
# 替换原始函数
gradio_client.utils.get_type = patched_get_type
logger.info("Successfully patched gradio_client.utils.get_type")
# 同样修补 _json_schema_to_python_type 函数
original_json_schema_to_python_type = gradio_client.utils._json_schema_to_python_type
def patched_json_schema_to_python_type(schema, defs=None):
if schema is True or schema is False:
return "bool"
if schema is None:
return "None"
if not isinstance(schema, dict):
return "any"
try:
return original_json_schema_to_python_type(schema, defs)
except Exception as e:
logger.warning(f"Error in json_schema_to_python_type: {e}")
return "any"
gradio_client.utils._json_schema_to_python_type = patched_json_schema_to_python_type
logger.info("Successfully patched gradio_client.utils._json_schema_to_python_type")
except Exception as e:
logger.error(f"Failed to patch Gradio utils: {e}")
# 创建一个备用图像
def create_backup_image(prompt=""):
logger.info(f"Creating backup image for: {prompt}")
img = PILImage.new('RGB', (512, 512), color=(240, 240, 250))
try:
from PIL import ImageDraw, ImageFont
draw = ImageDraw.Draw(img)
font = ImageFont.load_default()
# 使用英文消息避免编码问题
draw.text((20, 20), f"Prompt: {prompt}", fill=(0, 0, 0), font=font)
draw.text((20, 60), "Model loading failed. Showing placeholder image.", fill=(255, 0, 0), font=font)
except Exception as e:
logger.error(f"Error creating backup image: {e}")
return img
# 预加载图像用于快速响应
PLACEHOLDER_IMAGE = create_backup_image("placeholder")
# 使用 Hugging Face Inference API 生成图像
def generate_image_with_api(prompt, api_url=None, api_key=None):
"""
使用 Hugging Face Inference API 生成图像
Parameters:
- prompt: 文本提示
- api_url: API 端点 URL (可选)
- api_key: API 密钥 (可选)
Returns:
- PIL Image
"""
logger.info(f"Generating image via API for: {prompt}")
# 默认使用 Stable Diffusion API
if api_url is None:
api_url = "https://api-inference.huggingface.co/models/runwayml/stable-diffusion-v1-5"
# 尝试从环境变量中获取 API 密钥
if api_key is None:
api_key = os.environ.get("HF_API_KEY", "")
# 如果没有 API 密钥,使用公共访问(可能会受到速率限制)
headers = {}
if api_key:
headers["Authorization"] = f"Bearer {api_key}"
try:
# 设置请求参数
payload = {
"inputs": prompt,
"parameters": {
"num_inference_steps": 10, # 减少推理步骤以加快速度
"guidance_scale": 7.5,
"width": 512,
"height": 512
}
}
# 发送请求
response = requests.post(api_url, headers=headers, json=payload)
# 检查响应是否成功
if response.status_code == 200:
# 从响应中获取图像
image = PILImage.open(io.BytesIO(response.content))
logger.info("Successfully generated image via API")
return image
else:
# 如果遇到错误,记录响应并返回备用图像
error_text = response.text
logger.error(f"API error: {response.status_code}, {error_text}")
return None
except Exception as e:
logger.error(f"Failed to generate image via API: {e}")
return None
# 使用 Hugging Face Spaces 内置模型生成图像
def generate_image_with_spaces(prompt):
"""使用同一个 Hugging Face Space 内的其他公共空间来生成图像"""
logger.info(f"Generating image via Spaces for: {prompt}")
try:
# 一些公共可用的 Stable Diffusion 空间 URLs
space_urls = [
"https://huggingface-projects-stable-diffusion-demo.hf.space/api/predict",
"https://huggingface-projects-text-to-image.hf.space/api/predict",
"https://dataautogpt-playground.hf.space/api/predict"
]
# 尝试每个 URL 直到成功
for url in space_urls:
try:
payload = {
"data": [prompt, 7.5, 512, 512]
}
response = requests.post(url, json=payload, timeout=30)
if response.status_code == 200:
# 解析 JSON 响应
result = response.json()
# 根据结果格式提取图像数据
if isinstance(result, dict) and 'data' in result:
image_data = result['data'][0]
# 检查图像数据格式
if image_data.startswith('data:image'):
# 提取 base64 图像数据
image_b64 = image_data.split(',')[1]
image_bytes = base64.b64decode(image_b64)
image = PILImage.open(io.BytesIO(image_bytes))
logger.info(f"Successfully generated image via {url}")
return image
except Exception as e:
logger.warning(f"Failed to generate with {url}: {e}")
continue
logger.error("All space URLs failed")
return None
except Exception as e:
logger.error(f"Failed to generate image via Spaces: {e}")
return None
# 使用简单的规则生成图像作为备用方案
def generate_rule_based_image(prompt):
"""当AI模型不可用时使用规则生成图像"""
logger.info(f"Using rule-based generator for: {prompt}")
# 创建基础图像
img = PILImage.new('RGB', (512, 512), color=(240, 240, 250))
try:
from PIL import ImageDraw, ImageFont
draw = ImageDraw.Draw(img)
# 提取关键词
prompt_lower = prompt.lower()
# 设置默认颜色和形状
bg_color = (240, 240, 250) # 浅蓝背景
shape_color = (64, 64, 128) # 深蓝形状
# 基于关键词调整颜色
if "red" in prompt_lower:
shape_color = (200, 50, 50)
elif "blue" in prompt_lower:
shape_color = (50, 50, 200)
elif "green" in prompt_lower:
shape_color = (50, 200, 50)
elif "yellow" in prompt_lower:
shape_color = (200, 200, 50)
# 画一个基本形状
if "cat" in prompt_lower or "kitten" in prompt_lower:
# 猫头
draw.ellipse((156, 156, 356, 356), fill=shape_color)
# 猫眼睛
draw.ellipse((206, 206, 236, 236), fill=(255, 255, 255))
draw.ellipse((276, 206, 306, 236), fill=(255, 255, 255))
# 猫瞳孔
draw.ellipse((216, 216, 226, 226), fill=(0, 0, 0))
draw.ellipse((286, 216, 296, 226), fill=(0, 0, 0))
# 猫鼻子
draw.polygon([(256, 256), (246, 276), (266, 276)], fill=(255, 150, 150))
# 猫耳朵
draw.polygon([(156, 156), (176, 96), (216, 156)], fill=shape_color)
draw.polygon([(356, 156), (336, 96), (296, 156)], fill=shape_color)
elif "landscape" in prompt_lower or "mountain" in prompt_lower:
# 天空
draw.rectangle([(0, 0), (512, 300)], fill=(100, 150, 250))
# 山脉
draw.polygon([(0, 300), (150, 100), (300, 300)], fill=(100, 100, 100))
draw.polygon([(200, 300), (400, 150), (512, 300)], fill=(80, 80, 80))
# 地面
draw.rectangle([(0, 300), (512, 512)], fill=(100, 200, 100))
elif "castle" in prompt_lower or "building" in prompt_lower:
# 天空
draw.rectangle([(0, 0), (512, 200)], fill=(150, 200, 250))
# 主塔
draw.rectangle([(200, 200), (312, 400)], fill=shape_color)
# 塔顶
draw.polygon([(180, 200), (256, 100), (332, 200)], fill=(180, 0, 0))
# 小塔
draw.rectangle([(150, 300), (200, 400)], fill=shape_color)
draw.rectangle([(312, 300), (362, 400)], fill=shape_color)
# 城墙
draw.rectangle([(100, 400), (412, 450)], fill=shape_color)
# 地面
draw.rectangle([(0, 450), (512, 512)], fill=(100, 150, 100))
else:
# 默认绘制几何形状
draw.rectangle([(100, 100), (412, 412)], outline=(0, 0, 0), width=2)
draw.ellipse((150, 150, 362, 362), fill=shape_color)
draw.polygon([(256, 100), (412, 412), (100, 412)], fill=(shape_color[0]//2, shape_color[1]//2, shape_color[2]//2))
# 添加提示词和说明
font = ImageFont.load_default()
draw.text((10, 10), f"Prompt: {prompt}", fill=(0, 0, 0), font=font)
draw.text((10, 30), "Generated with rules (AI model unavailable)", fill=(100, 100, 100), font=font)
except Exception as e:
logger.error(f"Error in rule-based image generation: {e}")
return img
# 入口点函数 - 处理请求并生成图像
def generate_image(prompt):
# 处理空提示
if not prompt or prompt.strip() == "":
prompt = "a beautiful landscape"
logger.info(f"Empty prompt, using default: {prompt}")
logger.info(f"Received prompt: {prompt}")
# 尝试使用 Hugging Face API 生成
image = generate_image_with_api(prompt)
if image is not None:
return image
# 如果 API 方法失败,尝试使用 Spaces
logger.info("API method failed, trying Spaces method...")
image = generate_image_with_spaces(prompt)
if image is not None:
return image
# 如果所有 AI 方法都失败,使用规则生成
logger.warning("All AI methods failed, using rule-based image generation")
return generate_rule_based_image(prompt)
# 为旧版 gradio 创建界面
def create_demo():
# 使用 Interface 替代 Blocks (兼容3.19.1)
demo = gr.Interface(
fn=generate_image,
inputs=gr.Textbox(
label="Prompt",
placeholder="Describe the image you want, e.g.: a cute cat, sunset over mountains...",
lines=2
),
outputs=gr.Image(label="Generated Image", type="pil"),
title="Text to Image Generator",
description="Enter a text description to generate an image. This demo uses Hugging Face API for image generation.",
examples=[
"a cute cat sitting on a windowsill",
"beautiful sunset over mountains",
"an astronaut riding a horse in space",
"a fantasy castle on a floating island"
],
flagging_mode="never", # 使用枚举值 'never' 而不是 False
cache_examples=False
)
return demo
# 创建演示界面
demo = create_demo()
# 启动应用
if __name__ == "__main__":
try:
logger.info("Starting Gradio interface...")
demo.launch(
server_name="0.0.0.0",
share=False
)
except Exception as e:
logger.error(f"Failed to launch: {e}")