Spaces:
Running
Running
File size: 12,340 Bytes
82df48f 407a5fa 8718399 ae398e9 65762c4 407a5fa 0cfce88 7a3e379 0cfce88 7d0da85 5f71263 4564834 5f71263 0cfce88 4564834 7d0da85 4564834 5f71263 7d0da85 5f71263 7d0da85 0cfce88 ae398e9 7d0da85 ae398e9 5f71263 ae398e9 7d0da85 ae398e9 0cfce88 ae398e9 0cfce88 ae398e9 0cfce88 ae398e9 7d0da85 ae398e9 7d0da85 ae398e9 7d0da85 0cfce88 7d0da85 0cfce88 7d0da85 4564834 0cfce88 4564834 0cfce88 4564834 7d0da85 7a3e379 7d0da85 4564834 ae398e9 0cfce88 ae398e9 7d0da85 4564834 10428c0 4564834 10428c0 ae398e9 10428c0 8c6d7f4 10428c0 0cfce88 7a3e379 82df48f 4564834 e2bc0a8 82df48f 407a5fa 7d0da85 4564834 0cfce88 4564834 407a5fa 7d0da85 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 |
import gradio as gr
import numpy as np
import random
import logging
import sys
import os
import requests
import io
import json
import base64
from PIL import Image as PILImage
# 设置日志记录
logging.basicConfig(level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
stream=sys.stdout)
logger = logging.getLogger(__name__)
# 补丁修复 Gradio JSON Schema 错误
try:
import gradio_client.utils
# 保存原始函数
original_get_type = gradio_client.utils.get_type
# 创建新的 get_type 函数,处理布尔值
def patched_get_type(schema):
if schema is True or schema is False or schema is None:
return "any"
if not isinstance(schema, dict):
return "any"
return original_get_type(schema)
# 替换原始函数
gradio_client.utils.get_type = patched_get_type
logger.info("Successfully patched gradio_client.utils.get_type")
# 同样修补 _json_schema_to_python_type 函数
original_json_schema_to_python_type = gradio_client.utils._json_schema_to_python_type
def patched_json_schema_to_python_type(schema, defs=None):
if schema is True or schema is False:
return "bool"
if schema is None:
return "None"
if not isinstance(schema, dict):
return "any"
try:
return original_json_schema_to_python_type(schema, defs)
except Exception as e:
logger.warning(f"Error in json_schema_to_python_type: {e}")
return "any"
gradio_client.utils._json_schema_to_python_type = patched_json_schema_to_python_type
logger.info("Successfully patched gradio_client.utils._json_schema_to_python_type")
except Exception as e:
logger.error(f"Failed to patch Gradio utils: {e}")
# 创建一个备用图像
def create_backup_image(prompt=""):
logger.info(f"Creating backup image for: {prompt}")
img = PILImage.new('RGB', (512, 512), color=(240, 240, 250))
try:
from PIL import ImageDraw, ImageFont
draw = ImageDraw.Draw(img)
font = ImageFont.load_default()
# 使用英文消息避免编码问题
draw.text((20, 20), f"Prompt: {prompt}", fill=(0, 0, 0), font=font)
draw.text((20, 60), "Model loading failed. Showing placeholder image.", fill=(255, 0, 0), font=font)
except Exception as e:
logger.error(f"Error creating backup image: {e}")
return img
# 预加载图像用于快速响应
PLACEHOLDER_IMAGE = create_backup_image("placeholder")
# 使用 Hugging Face Inference API 生成图像
def generate_image_with_api(prompt, api_url=None, api_key=None):
"""
使用 Hugging Face Inference API 生成图像
Parameters:
- prompt: 文本提示
- api_url: API 端点 URL (可选)
- api_key: API 密钥 (可选)
Returns:
- PIL Image
"""
logger.info(f"Generating image via API for: {prompt}")
# 默认使用 Stable Diffusion API
if api_url is None:
api_url = "https://api-inference.huggingface.co/models/runwayml/stable-diffusion-v1-5"
# 尝试从环境变量中获取 API 密钥
if api_key is None:
api_key = os.environ.get("HF_API_KEY", "")
# 如果没有 API 密钥,使用公共访问(可能会受到速率限制)
headers = {}
if api_key:
headers["Authorization"] = f"Bearer {api_key}"
try:
# 设置请求参数
payload = {
"inputs": prompt,
"parameters": {
"num_inference_steps": 10, # 减少推理步骤以加快速度
"guidance_scale": 7.5,
"width": 512,
"height": 512
}
}
# 发送请求
response = requests.post(api_url, headers=headers, json=payload)
# 检查响应是否成功
if response.status_code == 200:
# 从响应中获取图像
image = PILImage.open(io.BytesIO(response.content))
logger.info("Successfully generated image via API")
return image
else:
# 如果遇到错误,记录响应并返回备用图像
error_text = response.text
logger.error(f"API error: {response.status_code}, {error_text}")
return None
except Exception as e:
logger.error(f"Failed to generate image via API: {e}")
return None
# 使用 Hugging Face Spaces 内置模型生成图像
def generate_image_with_spaces(prompt):
"""使用同一个 Hugging Face Space 内的其他公共空间来生成图像"""
logger.info(f"Generating image via Spaces for: {prompt}")
try:
# 一些公共可用的 Stable Diffusion 空间 URLs
space_urls = [
"https://huggingface-projects-stable-diffusion-demo.hf.space/api/predict",
"https://huggingface-projects-text-to-image.hf.space/api/predict",
"https://dataautogpt-playground.hf.space/api/predict"
]
# 尝试每个 URL 直到成功
for url in space_urls:
try:
payload = {
"data": [prompt, 7.5, 512, 512]
}
response = requests.post(url, json=payload, timeout=30)
if response.status_code == 200:
# 解析 JSON 响应
result = response.json()
# 根据结果格式提取图像数据
if isinstance(result, dict) and 'data' in result:
image_data = result['data'][0]
# 检查图像数据格式
if image_data.startswith('data:image'):
# 提取 base64 图像数据
image_b64 = image_data.split(',')[1]
image_bytes = base64.b64decode(image_b64)
image = PILImage.open(io.BytesIO(image_bytes))
logger.info(f"Successfully generated image via {url}")
return image
except Exception as e:
logger.warning(f"Failed to generate with {url}: {e}")
continue
logger.error("All space URLs failed")
return None
except Exception as e:
logger.error(f"Failed to generate image via Spaces: {e}")
return None
# 使用简单的规则生成图像作为备用方案
def generate_rule_based_image(prompt):
"""当AI模型不可用时使用规则生成图像"""
logger.info(f"Using rule-based generator for: {prompt}")
# 创建基础图像
img = PILImage.new('RGB', (512, 512), color=(240, 240, 250))
try:
from PIL import ImageDraw, ImageFont
draw = ImageDraw.Draw(img)
# 提取关键词
prompt_lower = prompt.lower()
# 设置默认颜色和形状
bg_color = (240, 240, 250) # 浅蓝背景
shape_color = (64, 64, 128) # 深蓝形状
# 基于关键词调整颜色
if "red" in prompt_lower:
shape_color = (200, 50, 50)
elif "blue" in prompt_lower:
shape_color = (50, 50, 200)
elif "green" in prompt_lower:
shape_color = (50, 200, 50)
elif "yellow" in prompt_lower:
shape_color = (200, 200, 50)
# 画一个基本形状
if "cat" in prompt_lower or "kitten" in prompt_lower:
# 猫头
draw.ellipse((156, 156, 356, 356), fill=shape_color)
# 猫眼睛
draw.ellipse((206, 206, 236, 236), fill=(255, 255, 255))
draw.ellipse((276, 206, 306, 236), fill=(255, 255, 255))
# 猫瞳孔
draw.ellipse((216, 216, 226, 226), fill=(0, 0, 0))
draw.ellipse((286, 216, 296, 226), fill=(0, 0, 0))
# 猫鼻子
draw.polygon([(256, 256), (246, 276), (266, 276)], fill=(255, 150, 150))
# 猫耳朵
draw.polygon([(156, 156), (176, 96), (216, 156)], fill=shape_color)
draw.polygon([(356, 156), (336, 96), (296, 156)], fill=shape_color)
elif "landscape" in prompt_lower or "mountain" in prompt_lower:
# 天空
draw.rectangle([(0, 0), (512, 300)], fill=(100, 150, 250))
# 山脉
draw.polygon([(0, 300), (150, 100), (300, 300)], fill=(100, 100, 100))
draw.polygon([(200, 300), (400, 150), (512, 300)], fill=(80, 80, 80))
# 地面
draw.rectangle([(0, 300), (512, 512)], fill=(100, 200, 100))
elif "castle" in prompt_lower or "building" in prompt_lower:
# 天空
draw.rectangle([(0, 0), (512, 200)], fill=(150, 200, 250))
# 主塔
draw.rectangle([(200, 200), (312, 400)], fill=shape_color)
# 塔顶
draw.polygon([(180, 200), (256, 100), (332, 200)], fill=(180, 0, 0))
# 小塔
draw.rectangle([(150, 300), (200, 400)], fill=shape_color)
draw.rectangle([(312, 300), (362, 400)], fill=shape_color)
# 城墙
draw.rectangle([(100, 400), (412, 450)], fill=shape_color)
# 地面
draw.rectangle([(0, 450), (512, 512)], fill=(100, 150, 100))
else:
# 默认绘制几何形状
draw.rectangle([(100, 100), (412, 412)], outline=(0, 0, 0), width=2)
draw.ellipse((150, 150, 362, 362), fill=shape_color)
draw.polygon([(256, 100), (412, 412), (100, 412)], fill=(shape_color[0]//2, shape_color[1]//2, shape_color[2]//2))
# 添加提示词和说明
font = ImageFont.load_default()
draw.text((10, 10), f"Prompt: {prompt}", fill=(0, 0, 0), font=font)
draw.text((10, 30), "Generated with rules (AI model unavailable)", fill=(100, 100, 100), font=font)
except Exception as e:
logger.error(f"Error in rule-based image generation: {e}")
return img
# 入口点函数 - 处理请求并生成图像
def generate_image(prompt):
# 处理空提示
if not prompt or prompt.strip() == "":
prompt = "a beautiful landscape"
logger.info(f"Empty prompt, using default: {prompt}")
logger.info(f"Received prompt: {prompt}")
# 尝试使用 Hugging Face API 生成
image = generate_image_with_api(prompt)
if image is not None:
return image
# 如果 API 方法失败,尝试使用 Spaces
logger.info("API method failed, trying Spaces method...")
image = generate_image_with_spaces(prompt)
if image is not None:
return image
# 如果所有 AI 方法都失败,使用规则生成
logger.warning("All AI methods failed, using rule-based image generation")
return generate_rule_based_image(prompt)
# 为旧版 gradio 创建界面
def create_demo():
# 使用 Interface 替代 Blocks (兼容3.19.1)
demo = gr.Interface(
fn=generate_image,
inputs=gr.Textbox(
label="Prompt",
placeholder="Describe the image you want, e.g.: a cute cat, sunset over mountains...",
lines=2
),
outputs=gr.Image(label="Generated Image", type="pil"),
title="Text to Image Generator",
description="Enter a text description to generate an image. This demo uses Hugging Face API for image generation.",
examples=[
"a cute cat sitting on a windowsill",
"beautiful sunset over mountains",
"an astronaut riding a horse in space",
"a fantasy castle on a floating island"
],
flagging_mode="never", # 使用枚举值 'never' 而不是 False
cache_examples=False
)
return demo
# 创建演示界面
demo = create_demo()
# 启动应用
if __name__ == "__main__":
try:
logger.info("Starting Gradio interface...")
demo.launch(
server_name="0.0.0.0",
share=False
)
except Exception as e:
logger.error(f"Failed to launch: {e}")
|