IDMR-demo / src /model.py
liubangwei
init IDMR demo
1855cc2
from typing import Dict, Optional
import torch
import torch.distributed as dist
from torch import nn, Tensor
from transformers import PreTrainedModel, AutoModelForCausalLM, AutoConfig
from peft import LoraConfig, get_peft_model, PeftModel
from src.arguments import ModelArguments
from src.vlm_backbone.phi3_v.modeling_phi3_v import Phi3VForCausalLM
from src.vlm_backbone.llava_next import LlavaNextForConditionalGeneration
from transformers import Qwen2VLForConditionalGeneration
class MMEBModel(nn.Module):
TRANSFORMER_CLS = AutoModelForCausalLM
def __init__(self,
encoder: PreTrainedModel,
pooling: str = 'cls',
normalize: bool = False,
temperature: float = 1.0,
):
super().__init__()
self.config = encoder.config
self.encoder = encoder
self.pooling = pooling
self.normalize = normalize
self.temperature = temperature
self.cross_entropy = nn.CrossEntropyLoss(reduction='mean')
self.is_ddp = dist.is_initialized()
if self.is_ddp:
self.process_rank = dist.get_rank()
self.world_size = dist.get_world_size()
def encode_input(self, input):
hidden_states = self.encoder(**input, return_dict=True, output_hidden_states=True)
hidden_states = hidden_states.hidden_states[-1]
pooled_output = self._pooling(hidden_states, input['attention_mask'])
return pooled_output
def _pooling(self, last_hidden_state, attention_mask):
if self.pooling == 'last' or self.pooling == 'eos':
sequence_lengths = attention_mask.sum(dim=1) - 1
batch_size = last_hidden_state.shape[0]
reps = last_hidden_state[
torch.arange(batch_size, device=last_hidden_state.device), sequence_lengths]
else:
raise NotImplementedError
if self.normalize:
reps = torch.nn.functional.normalize(reps, p=2, dim=-1)
return reps
@classmethod
def build(cls, model_args: ModelArguments, **hf_kwargs):
# Loading the base model
lora_target_modules = None
if model_args.model_backbone == "llava_next":
config = AutoConfig.from_pretrained(model_args.model_name, trust_remote_code=True)
config.use_cache = False
config.padding_side = "left"
base_model = LlavaNextForConditionalGeneration.from_pretrained(
model_args.model_name,
config=config,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
)
elif model_args.model_backbone == "qwen":
base_model = Qwen2VLForConditionalGeneration.from_pretrained(
model_args.model_name,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
)
base_model.padding_side = "right"
# Loading the base model
elif model_args.model_backbone == "phi35v":
config = AutoConfig.from_pretrained(model_args.model_name, trust_remote_code=True)
# config._attn_implementation = "eager"
config.attn_implementation = "flash_attention_2"
config.padding_side = "right"
config.use_cache = False
base_model = Phi3VForCausalLM.from_pretrained(
model_args.model_name,
config=config,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
)
elif model_args.model_backbone == "internvl_2_5":
# from transformers import InternVLChatConfig, InternVLChatModel
from src.vlm_backbone.intern_vl import InternVLChatConfig, InternVLChatModel
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(
model_args.model_name,
trust_remote_code=True
)
# import pdb;pdb.set_trace()
config = InternVLChatConfig.from_pretrained(model_args.model_name, trust_remote_code=True)
# config.vision_config.image_size = data_args.force_image_size # 假设data_args包含图像尺寸
config.use_flash_attn = False
base_model = InternVLChatModel.from_pretrained(
model_args.model_name,
config=config,
tokenizer=tokenizer,
# attn_implementation="flash_attention_2",
torch_dtype=torch.bfloat16
)
lora_target_modules = base_model.get_lora_target_modules()
else:
config = AutoConfig.from_pretrained(model_args.model_name, trust_remote_code=True)
config.use_cache = False
config.padding_side = "right"
base_model = cls.TRANSFORMER_CLS.from_pretrained(
model_args.model_name, **hf_kwargs, config=config,
attn_implementation="flash_attention_2",
torch_dtype=torch.bfloat16,
trust_remote_code=True)
base_model.padding_side = "right"
if model_args.lora:
if lora_target_modules is None:
lora_target_modules = model_args.lora_target_modules.split(',')
lora_config = LoraConfig(
r=model_args.lora_r,
lora_alpha=model_args.lora_alpha,
target_modules=lora_target_modules,
lora_dropout=model_args.lora_dropout,
init_lora_weights="gaussian",
use_dora=True,
inference_mode=False
)
lora_model = get_peft_model(base_model, lora_config)
model = cls(
encoder=lora_model,
pooling=model_args.pooling,
normalize=model_args.normalize,
temperature=model_args.temperature
)
else:
model = cls(
encoder=base_model,
pooling=model_args.pooling,
normalize=model_args.normalize,
temperature=model_args.temperature
)
return model
@classmethod
def load(cls, model_args: ModelArguments, **hf_kwargs):
# Loading the base model
checkpoint_path = model_args.checkpoint_path if model_args.checkpoint_path else model_args.model_name
if model_args.model_backbone == "llava_next":
config = AutoConfig.from_pretrained(model_args.model_name, trust_remote_code=True)
config.use_cache = False
base_model = LlavaNextForConditionalGeneration.from_pretrained(
model_args.model_name,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
# attn_implementation="flash_attention_2"
)
base_model.padding_side = "left"
elif model_args.model_backbone == "phi35v":
# Loading the base model
config = AutoConfig.from_pretrained(model_args.model_name, trust_remote_code=True)
config.use_cache = False
config.padding_side = "right"
base_model = Phi3VForCausalLM.from_pretrained(model_args.model_name, **hf_kwargs, config=config,
attn_implementation="flash_attention_2",
torch_dtype=torch.bfloat16, trust_remote_code=True)
base_model.padding_side = "right"
elif model_args.model_backbone == "internvl_2_5":
print("loading model")
from src.vlm_backbone.intern_vl import InternVLChatConfig, InternVLChatModel
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(
model_args.model_name,
trust_remote_code=True
)
config = InternVLChatConfig.from_pretrained(model_args.model_name)
# config.vision_config.image_size = data_args.force_image_size
config.use_flash_attn = False
base_model = InternVLChatModel.from_pretrained(
model_args.model_name,
config=config,
tokenizer=tokenizer,
# attn_implementation="flash_attention_2",
torch_dtype=torch.bfloat16
)
else:
# Loading the base model
config = AutoConfig.from_pretrained(model_args.model_name, trust_remote_code=True)
config.use_cache = False
config.padding_side = "right"
base_model = cls.TRANSFORMER_CLS.from_pretrained(
checkpoint_path, **hf_kwargs, config=config,
attn_implementation="flash_attention_2",
torch_dtype=torch.bfloat16,
trust_remote_code=True)
base_model.padding_side = "right"
# Building the model on top of the base
if model_args.lora:
print("loading lora parameters")
lora_config = LoraConfig.from_pretrained(checkpoint_path)
lora_model = PeftModel.from_pretrained(base_model, checkpoint_path, config=lora_config)
merged_model = lora_model.merge_and_unload()
model = cls(
encoder=merged_model,
pooling=model_args.pooling,
normalize=model_args.normalize
)
else:
model = cls(
encoder=base_model,
pooling=model_args.pooling,
normalize=model_args.normalize
)
return model
def save(self, output_dir: str):
self.encoder.save_pretrained(output_dir)
def forward(self, qry: Dict[str, Tensor] = None, tgt: Dict[str, Tensor] = None, neg: Dict[str, Tensor] = None):
qry_reps = self.encode_input(qry) if qry else None # (bsz_per_device, dim)
tgt_reps = self.encode_input(tgt) if tgt else None # (bsz_per_device, dim)
neg_reps = self.encode_input(neg) if neg else None # (bsz_per_device, dim)
if qry_reps is None or tgt_reps is None:
return {"qry_reps": qry_reps, "tgt_reps": tgt_reps}
# Gather representations if using DDP
if self.is_ddp:
all_qry_reps = self._dist_gather_tensor(qry_reps)
all_tgt_reps = self._dist_gather_tensor(tgt_reps)
all_neg_reps = self._dist_gather_tensor(neg_reps) if neg_reps is not None else None
else:
all_qry_reps = qry_reps
all_tgt_reps = tgt_reps
all_neg_reps = neg_reps
# Compute similarity scores
scores = self.compute_similarity(all_qry_reps, all_tgt_reps)
scores = scores.view(all_qry_reps.size(0), -1)
# Add negative scores if available
if all_neg_reps is not None:
qry_neg_cos = self.compute_similarity(all_qry_reps, all_neg_reps)
scores = torch.cat([scores, qry_neg_cos], dim=1)
# Compute loss
target = torch.arange(scores.size(0), device=scores.device, dtype=torch.long)
target = target * (all_qry_reps.size(0) // all_tgt_reps.size(0))
loss = self.cross_entropy(scores / self.temperature, target)
if self.is_ddp:
loss = loss * self.world_size
return loss
def _dist_gather_tensor(self, t: Tensor):
t = t.contiguous()
all_tensors = [torch.empty_like(t) for _ in range(self.world_size)]
dist.all_gather(all_tensors, t)
all_tensors[self.process_rank] = t
all_tensors = torch.cat(all_tensors, dim=0)
return all_tensors
def compute_similarity(self, q_reps, p_reps):
return torch.matmul(q_reps, p_reps.transpose(0, 1))