File size: 11,862 Bytes
a72a7d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1855cc2
a72a7d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
from typing import Dict, Optional
import torch
import torch.distributed as dist
from torch import nn, Tensor
from transformers import PreTrainedModel, AutoModelForCausalLM, AutoConfig
from peft import LoraConfig, get_peft_model, PeftModel
from src.arguments import ModelArguments
from src.vlm_backbone.phi3_v.modeling_phi3_v import Phi3VForCausalLM
from src.vlm_backbone.llava_next import LlavaNextForConditionalGeneration
from transformers import Qwen2VLForConditionalGeneration


class MMEBModel(nn.Module):
    TRANSFORMER_CLS = AutoModelForCausalLM

    def __init__(self,
                 encoder: PreTrainedModel,
                 pooling: str = 'cls',
                 normalize: bool = False,
                 temperature: float = 1.0,
                 ):
        super().__init__()
        self.config = encoder.config
        self.encoder = encoder
        self.pooling = pooling
        self.normalize = normalize
        self.temperature = temperature
        self.cross_entropy = nn.CrossEntropyLoss(reduction='mean')
        self.is_ddp = dist.is_initialized()
        if self.is_ddp:
            self.process_rank = dist.get_rank()
            self.world_size = dist.get_world_size()

    def encode_input(self, input):
        hidden_states = self.encoder(**input, return_dict=True, output_hidden_states=True)
        hidden_states = hidden_states.hidden_states[-1]
        pooled_output = self._pooling(hidden_states, input['attention_mask'])
        return pooled_output

    def _pooling(self, last_hidden_state, attention_mask):
        if self.pooling == 'last' or self.pooling == 'eos':
            sequence_lengths = attention_mask.sum(dim=1) - 1
            batch_size = last_hidden_state.shape[0]
            reps = last_hidden_state[
                    torch.arange(batch_size, device=last_hidden_state.device), sequence_lengths]
        else:
            raise NotImplementedError
        if self.normalize:
            reps = torch.nn.functional.normalize(reps, p=2, dim=-1)
        return reps

    @classmethod
    def build(cls, model_args: ModelArguments, **hf_kwargs):
        # Loading the base model
        lora_target_modules = None
        if model_args.model_backbone == "llava_next":
            config = AutoConfig.from_pretrained(model_args.model_name, trust_remote_code=True)
            config.use_cache = False
            config.padding_side = "left"
            base_model = LlavaNextForConditionalGeneration.from_pretrained(
                model_args.model_name,
                config=config,
                torch_dtype=torch.bfloat16,
                low_cpu_mem_usage=True,
            )
        elif model_args.model_backbone == "qwen":
            base_model = Qwen2VLForConditionalGeneration.from_pretrained(
                model_args.model_name,
                torch_dtype=torch.bfloat16,
                low_cpu_mem_usage=True,
            )
            base_model.padding_side = "right"
        # Loading the base model
        elif model_args.model_backbone == "phi35v":
            config = AutoConfig.from_pretrained(model_args.model_name, trust_remote_code=True)
            # config._attn_implementation = "eager"
            config.attn_implementation = "flash_attention_2"
            config.padding_side = "right"
            config.use_cache = False
            base_model = Phi3VForCausalLM.from_pretrained(
                model_args.model_name,
                config=config,
                torch_dtype=torch.bfloat16,
                low_cpu_mem_usage=True,
            )
        elif model_args.model_backbone == "internvl_2_5":
            # from transformers import InternVLChatConfig, InternVLChatModel
            from src.vlm_backbone.intern_vl import InternVLChatConfig, InternVLChatModel
            from transformers import AutoTokenizer
            tokenizer = AutoTokenizer.from_pretrained(
                model_args.model_name, 
                trust_remote_code=True
            )
            # import pdb;pdb.set_trace()

            config = InternVLChatConfig.from_pretrained(model_args.model_name, trust_remote_code=True)
            # config.vision_config.image_size = data_args.force_image_size  # 假设data_args包含图像尺寸
            config.use_flash_attn = False
            base_model = InternVLChatModel.from_pretrained(
                model_args.model_name,
                config=config,
                tokenizer=tokenizer,
                # attn_implementation="flash_attention_2",
                
                torch_dtype=torch.bfloat16
            )
            lora_target_modules = base_model.get_lora_target_modules()
            
            
        else:
            config = AutoConfig.from_pretrained(model_args.model_name, trust_remote_code=True)
            config.use_cache = False
            config.padding_side = "right"
            base_model = cls.TRANSFORMER_CLS.from_pretrained(
                model_args.model_name, **hf_kwargs, config=config,
                attn_implementation="flash_attention_2",
                torch_dtype=torch.bfloat16,
                trust_remote_code=True)
            base_model.padding_side = "right"

        if model_args.lora:
            if lora_target_modules is None:
                lora_target_modules = model_args.lora_target_modules.split(',')
            lora_config = LoraConfig(
                r=model_args.lora_r,
                lora_alpha=model_args.lora_alpha,
                target_modules=lora_target_modules,
                lora_dropout=model_args.lora_dropout,
                init_lora_weights="gaussian",
                use_dora=True,
                inference_mode=False
            )
            lora_model = get_peft_model(base_model, lora_config)
            model = cls(
                encoder=lora_model,
                pooling=model_args.pooling,
                normalize=model_args.normalize,
                temperature=model_args.temperature
            )
        else:
            model = cls(
                encoder=base_model,
                pooling=model_args.pooling,
                normalize=model_args.normalize,
                temperature=model_args.temperature
            )
        return model

    @classmethod
    def load(cls, model_args: ModelArguments, **hf_kwargs):
        # Loading the base model
        checkpoint_path = model_args.checkpoint_path if model_args.checkpoint_path else model_args.model_name
        if model_args.model_backbone == "llava_next":
            config = AutoConfig.from_pretrained(model_args.model_name, trust_remote_code=True)
            config.use_cache = False
            base_model = LlavaNextForConditionalGeneration.from_pretrained(
                model_args.model_name,
                torch_dtype=torch.bfloat16,
                low_cpu_mem_usage=True,
                # attn_implementation="flash_attention_2"
            )
            base_model.padding_side = "left"
        elif model_args.model_backbone == "phi35v":
            # Loading the base model
            config = AutoConfig.from_pretrained(model_args.model_name, trust_remote_code=True)
            config.use_cache = False
            config.padding_side = "right"
            base_model = Phi3VForCausalLM.from_pretrained(model_args.model_name, **hf_kwargs, config=config,
                                                          attn_implementation="flash_attention_2",
                                                          torch_dtype=torch.bfloat16, trust_remote_code=True)
            base_model.padding_side = "right"
        elif model_args.model_backbone == "internvl_2_5":
            print("loading model")
            from src.vlm_backbone.intern_vl import InternVLChatConfig, InternVLChatModel
            from transformers import AutoTokenizer
            tokenizer = AutoTokenizer.from_pretrained(
                model_args.model_name, 
                trust_remote_code=True
            )
            config = InternVLChatConfig.from_pretrained(model_args.model_name)
            # config.vision_config.image_size = data_args.force_image_size 
            config.use_flash_attn = False
            base_model = InternVLChatModel.from_pretrained(
                model_args.model_name,
                config=config,
                tokenizer=tokenizer,
                # attn_implementation="flash_attention_2",
                torch_dtype=torch.bfloat16
            )
        else:
            # Loading the base model
            config = AutoConfig.from_pretrained(model_args.model_name, trust_remote_code=True)
            config.use_cache = False
            config.padding_side = "right"

            base_model = cls.TRANSFORMER_CLS.from_pretrained(
                checkpoint_path, **hf_kwargs, config=config,
                attn_implementation="flash_attention_2",
                torch_dtype=torch.bfloat16,
                trust_remote_code=True)
            base_model.padding_side = "right"

        # Building the model on top of the base
        if model_args.lora:
            print("loading lora parameters")
            lora_config = LoraConfig.from_pretrained(checkpoint_path)
            lora_model = PeftModel.from_pretrained(base_model, checkpoint_path, config=lora_config)
            
            merged_model = lora_model.merge_and_unload()
            model = cls(
                encoder=merged_model,
                pooling=model_args.pooling,
                normalize=model_args.normalize
            )
        else:
            model = cls(
                encoder=base_model,
                pooling=model_args.pooling,
                normalize=model_args.normalize
            )
        return model

    def save(self, output_dir: str):
        self.encoder.save_pretrained(output_dir)

    def forward(self, qry: Dict[str, Tensor] = None, tgt: Dict[str, Tensor] = None, neg: Dict[str, Tensor] = None):
        qry_reps = self.encode_input(qry) if qry else None  # (bsz_per_device, dim)
        tgt_reps = self.encode_input(tgt) if tgt else None # (bsz_per_device, dim)
        neg_reps = self.encode_input(neg) if neg else None # (bsz_per_device, dim)

        if qry_reps is None or tgt_reps is None:
            return {"qry_reps": qry_reps, "tgt_reps": tgt_reps}
        
        # Gather representations if using DDP
        if self.is_ddp:
            all_qry_reps = self._dist_gather_tensor(qry_reps)
            all_tgt_reps = self._dist_gather_tensor(tgt_reps)
            all_neg_reps = self._dist_gather_tensor(neg_reps) if neg_reps is not None else None
        else:
            all_qry_reps = qry_reps
            all_tgt_reps = tgt_reps
            all_neg_reps = neg_reps

        # Compute similarity scores
        scores = self.compute_similarity(all_qry_reps, all_tgt_reps)
        scores = scores.view(all_qry_reps.size(0), -1)
        
        # Add negative scores if available
        if all_neg_reps is not None:
            qry_neg_cos = self.compute_similarity(all_qry_reps, all_neg_reps)
            scores = torch.cat([scores, qry_neg_cos], dim=1)
        
        # Compute loss
        target = torch.arange(scores.size(0), device=scores.device, dtype=torch.long)
        target = target * (all_qry_reps.size(0) // all_tgt_reps.size(0))
        loss = self.cross_entropy(scores / self.temperature, target)
        
        if self.is_ddp:
            loss = loss * self.world_size
        
        return loss

    def _dist_gather_tensor(self, t: Tensor):
        t = t.contiguous()
        all_tensors = [torch.empty_like(t) for _ in range(self.world_size)]
        dist.all_gather(all_tensors, t)
        all_tensors[self.process_rank] = t
        all_tensors = torch.cat(all_tensors, dim=0)
        return all_tensors

    def compute_similarity(self, q_reps, p_reps):
        return torch.matmul(q_reps, p_reps.transpose(0, 1))