Spaces:
Sleeping
Sleeping
File size: 2,993 Bytes
3a329d1 7ac370b 3a329d1 7ac370b 3a329d1 7ac370b ca7444f 7ac370b 1bcc7b4 7ac370b ca7444f 7ac370b ca7444f 7ac370b 1bcc7b4 7ac370b f4c1e61 7ac370b 1bcc7b4 7ac370b 12ee82e 7ac370b 12ee82e 7ac370b f4c1e61 7ac370b f4c1e61 7ac370b 1bcc7b4 12ee82e 7ac370b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
import gradio as gr
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from constants import *
from mpl_data_plotter import MatplotlibDataPlotter
def convert_int64_to_int32(df):
for col in df.columns:
if df[col].dtype == 'int64':
print(col)
df[col] = df[col].astype('int32')
return df
print(f"Loading domains data...")
single_df = pd.read_csv(SINGLE_DOMAINS_FILE, compression='gzip')
single_df['biosyn_class_index'] = single_df.bgc_class.apply(lambda x: BIOSYN_CLASS_NAMES.index(x))
single_df = convert_int64_to_int32(single_df)
pair_df = pd.read_csv(PAIR_DOMAINS_FILE, compression='gzip')
pair_df['biosyn_class_index'] = pair_df.bgc_class.apply(lambda x: BIOSYN_CLASS_NAMES.index(x))
pair_df = convert_int64_to_int32(pair_df)
num_domains_in_region_df = single_df.groupby('cds_region_id', as_index=False).agg({'as_domain_id': 'count'}).rename(
columns={'as_domain_id': 'num_domains'})
unique_domain_lengths = num_domains_in_region_df.num_domains.unique()
print(f"Initializing data plotter...")
data_plotter = MatplotlibDataPlotter(single_df, pair_df, num_domains_in_region_df)
def update_all_plots(frequency, split_name):
return data_plotter.plot_single_domains(frequency, split_name), data_plotter.plot_pair_domains(frequency, split_name)
print(f"Defining blocks...")
# Create Gradio interface
with gr.Blocks(title="Interactive Wave Plotter") as demo:
gr.Markdown("## Interactive Wave Plotter")
gr.Markdown("Adjust the slider to change the frequency of all waves simultaneously.")
with gr.Row():
frequency_slider = gr.Slider(
minimum=int(unique_domain_lengths.min()),
maximum=int(unique_domain_lengths.max()),
step=1,
value=int(unique_domain_lengths.min()),
label="Min number of domains"
)
with gr.Row():
with gr.Column():
split_selector = gr.Dropdown(
choices=["stratified"] + BIOSYN_CLASS_NAMES,
value="stratified",
label="Split name"
)
with gr.Column():
single_domains_plot = gr.Plot(
label="Single domains",
container=True,
elem_id="single_domains_plot"
)
# gr.HTML("""
# <style>
# #single_domains_plot {
# height: 100% !important;
# width: 100% !important;
# }
# </style>
# """)
with gr.Column():
pair_domains_plot = gr.Plot(label="Pair domains")
# with gr.Column():
# combined_plot = gr.Plot(label="Combined Wave")
frequency_slider.release(
fn=update_all_plots,
inputs=[frequency_slider, split_selector],
outputs=[single_domains_plot, pair_domains_plot]#, cosine_plot]
)
print(f"Launching!...")
demo.launch()
# demo.load(filter_map, [min_price, max_price, boroughs], map) |