Spaces:
Running
Running
import gradio as gr | |
import PIL.Image as Image | |
from ultralytics import ASSETS, YOLO | |
model = YOLO("yolo12x.pt") | |
def predict_image(img, conf_threshold, iou_threshold): | |
"""Predicts persons in an image and returns the image with detections and count.""" | |
results = model.predict( | |
source=img, | |
conf=conf_threshold, | |
iou=iou_threshold, | |
show_labels=True, | |
show_conf=True, | |
imgsz=640, | |
classes=[0] | |
) | |
for r in results: | |
im_array = r.plot() | |
im = Image.fromarray(im_array[..., ::-1]) | |
person_count = len(results[0].boxes) if results[0].boxes is not None else 0 | |
return im, f"Number of persons detected: {person_count}" | |
iface = gr.Interface( | |
fn=predict_image, | |
inputs=[ | |
gr.Image(type="pil", label="Upload Image"), | |
gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence threshold"), | |
gr.Slider(minimum=0, maximum=1, value=0.45, label="IoU threshold"), | |
], | |
outputs=[ | |
gr.Image(type="pil", label="Result"), | |
gr.Textbox(label="Person Count") | |
], | |
title="Image Person Detection", | |
description="Upload images to detect persons and get a count", | |
) | |
if __name__ == "__main__": | |
iface.launch() |