import gradio as gr import PIL.Image as Image from ultralytics import ASSETS, YOLO model = YOLO("yolo12x.pt") def predict_image(img, conf_threshold, iou_threshold): """Predicts persons in an image and returns the image with detections and count.""" results = model.predict( source=img, conf=conf_threshold, iou=iou_threshold, show_labels=True, show_conf=True, imgsz=640, classes=[0] ) for r in results: im_array = r.plot() im = Image.fromarray(im_array[..., ::-1]) person_count = len(results[0].boxes) if results[0].boxes is not None else 0 return im, f"Number of persons detected: {person_count}" iface = gr.Interface( fn=predict_image, inputs=[ gr.Image(type="pil", label="Upload Image"), gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence threshold"), gr.Slider(minimum=0, maximum=1, value=0.45, label="IoU threshold"), ], outputs=[ gr.Image(type="pil", label="Result"), gr.Textbox(label="Person Count") ], title="Image Person Detection", description="Upload images to detect persons and get a count", ) if __name__ == "__main__": iface.launch()