FEIR-viz-tool / app.py
NanLi2021's picture
add lorenz curve labels
d67fcd9
import sys
from pathlib import Path
import string
import random
import torch
import numpy as np
import pickle
import gradio as gr
import pandas as pd
from scipy.special import softmax
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import hydra
from omegaconf import open_dict, DictConfig
import matplotlib.pyplot as plt
import matplotlib
from matplotlib.patches import Patch
sns.set()
sns.set_style("darkgrid")
from utils.data import *
from utils.metrics import *
def user_interface(Ufile, Pfile, Sfile=None, job_meta_file=None, user_meta_file=None, user_groups=None):
recdata = Data(Ufile, Pfile, Sfile, job_meta_file, user_meta_file, user_groups)
def calculate_user_item_metrics(res, S, U, k=10):
# get rec
m, n = res.shape
if not torch.is_tensor(res):
res = torch.from_numpy(res)
if not torch.is_tensor(U):
U = torch.from_numpy(U)
_, rec = torch.topk(res, k, dim=1)
rec_onehot = slow_onehot(rec, res)
# rec_onehot = F.one_hot(rec, num_classes=n).sum(1).float()
try:
rec_per_job = rec_onehot.sum(axis=0).numpy()
except:
rec_per_job = rec_onehot.sum(axis=0).cpu().numpy()
rec = rec.cpu()
S = S.cpu()
# envy
envy = expected_envy_torch_vec(U, rec_onehot, k=1).numpy()
# competitors for each rec job
competitors = get_competitors(rec_per_job, rec)
# rank
better_competitors = get_num_better_competitors(rec, S)
# scores per job for later zoom in scores
scores = get_scores_per_job(rec, S)
return {'rec': rec, 'envy': envy, 'competitors': competitors, 'ranks': better_competitors, 'scores_job': scores}
def plot_user_envy(user=0, k=2):
plt.close('all')
user = int(user)
if k in recdata.lookup_dict:
ret_dict = recdata.lookup_dict[k]
else:
ret_dict = calculate_user_item_metrics(recdata.P_sub, recdata.S_sub, recdata.U_sub, k=k)
recdata.lookup_dict[k] = ret_dict
# user's recommended jobs
users_rec = ret_dict['rec'][user].numpy()
# Plot
fig, ax1 = plt.subplots(figsize=(10, 5))
# fig.tight_layout()
fig.subplots_adjust(bottom=0.2)
envy = ret_dict['envy'].sum(-1)
envy_user = envy[user]
# plot envy histogram
n, bins, patches = ax1.hist(envy, bins=30, color='grey', alpha=0.5)
ax1.set_yscale('symlog')
sns.kdeplot(envy, color='grey', bw_adjust=0.3, cut=0, ax=ax1)
# mark this user's envy
# index of the bin that contains this user's envy
idx = np.digitize(envy_user, bins)
# print(envy_user, idx)
patches[idx-1].set_fc('r')
ax1.legend(handles=[Patch(facecolor='r', edgecolor='r', alpha=0.5,
label='Your envy level')], fontsize=15)
ax1.set_xlabel('Envy', fontsize=18)
ax1.set_ylabel('Number of users (log scale)', fontsize=18)
return fig
def plot_user_scores(user=0, k=2):
user = int(user)
if k in recdata.lookup_dict:
ret_dict = recdata.lookup_dict[k]
else:
ret_dict = calculate_user_item_metrics(recdata.P_sub, recdata.S_sub, recdata.U_sub, k=k)
recdata.lookup_dict[k] = ret_dict
users_rec = ret_dict['rec'][user].numpy()
scores = ret_dict['scores_job']
# scores = [softmax(np.array(scores[jb])*0.5) for jb in users_rec]
scores = [scores[jb] for jb in users_rec]
rank_xs = [list(range(1, len(s)+1)) for s in scores]
my_ranks = [1+int(i) for i in ret_dict['ranks'][user]]
# my scores are the scores of the recommended jobs with rank
# my_scores = [scores[i][j] for i, j in enumerate(my_ranks)]
my_scores = [recdata.S_sub[user, job_id].item() for job_id in users_rec]
# my_scores_log = np.log(np.array(my_scores).astype(float))
ys = np.arange(len(users_rec))
# user's recommended jobs
if (user, k) in recdata.user_temp_data:
df = recdata.user_temp_data[(user, k)]
else:
df = pd.DataFrame({'x': rank_xs, 's': scores, 'y': ys})
df = df.explode(list('xs'))
recdata.user_temp_data[(user, k)] = df
# df['log_scores'] = np.log(df['s'].values.astype(float))
fig, ax = plt.subplots(figsize=(10, 5))
# fig.tight_layout()
fig.subplots_adjust(bottom=0.3)
def sub_cmap(cmap, vmin, vmax):
return lambda v: cmap(vmin + (vmax - vmin) * v)
# palette=matplotlib.cm.get_cmap('Greens').reversed()
# palette = sub_cmap(palette,0.2, 0.8)
sns.scatterplot(data=df, x="y", y="s", ax=ax, alpha=0.6,
legend=False, s=100, hue='y', palette="summer") #monotone color palette
sns.scatterplot(y=my_scores, x=range(k), ax=ax,
alpha=0.8, s=200, ec='r', fc='none', label='Your rank')
# add ranking of this user's score for each job
# find score gaps
gaps = np.diff(np.sort(scores[0])).mean()
for i, (y, x) in enumerate(zip(my_scores, range(k))):
ax.text(x-0.3, y+gaps, my_ranks[i], color='r', fontsize=15)
# add notation for 'rank'
# ax.text(-0.8, 1.12, 'Your rank', color='r', fontsize=12)
ax.set_xticks(range(k))
# shorten the job title
titles = [recdata.job_metadata[jb] for jb in users_rec]
titles = [t[:15] + '...' if len(t) > 15 else t for t in titles]
ax.set_xticklabels(titles, rotation=25, ha='right', fontsize=15)
ax.set_xlabel('')
ax.set_xlim(-1, k)
# ax.grid(False)
ax.set_ylabel('Score', fontsize=18)
# ax.set_ylim(-0.09, 1.2)
ax.legend(fontsize=15)
return fig
# demo = gr.Blocks(gr.themes.Base.from_hub('finlaymacklon/smooth_slate'))
demo = gr.Blocks(gr.themes.Soft())
with demo:
def submit0(user, k):
fig = plot_user_envy(user, k)
return {
hist_plot: gr.update(value=fig, visible=True),
}
def submit2(user, k):
bar = plot_user_scores(user, k)
return {
bar_plot2: gr.update(value=bar, visible=True)
}
def submit(user):
new_job_num = random.randint(1,6)
# if new_job_num == 0, do nothing but clear the plots
if new_job_num > 0:
print(f'adding {new_job_num} new jobs')
recdata.update(new_user_num=0, new_job_num=new_job_num)
recdata.tweak_P(user)
return {
hist_plot: gr.update(visible=False),
bar_plot2: gr.update(visible=False)
}
# def submit_login(user):
# return {
# k: gr.update(visible=True),
# btn: gr.update(visible=True),
# btn0: gr.update(visible=True),
# btn2: gr.update(visible=True),
# pswd: gr.update(visible=False),
# lgbtn: gr.update(visible=False),
# }
# layout
gr.Markdown("## Job Recommendation Inferiority and Envy Monitor Demo")
with gr.Row():
with gr.Column(scale=1):
user = gr.Textbox(label='User ID',default='0', placeholder='Enter a random integer user ID')
# with gr.Column(scale=1):
# pswd = gr.Textbox(label='Password',default='********')
# with gr.Column(scale=1):
# lgbtn = gr.Button("Login")
# with gr.Row():
with gr.Column(scale=1):
k = gr.Slider(minimum=1, maximum=20,
default=4, step=1, label='Number of Jobs', visible=True)
with gr.Column(scale=1):
btn = gr.Button("Refresh to see new jobs", visible=True)
with gr.Tab('Envy'):
btn0 = gr.Button("User envy distribution", visible=True)
hist_plot = gr.Plot(visible=False)
with gr.Tab('Inferiority'):
with gr.Row():
# btn1 = gr.Button("User ranks for the recommended jobs")
btn2 = gr.Button("User scores/ranks for the recommended jobs", visible=True)
# bar_plot = gr.Plot()
bar_plot2 = gr.Plot(visible=False)
# lgbtn.click(submit_login, inputs=[user], outputs=[k, btn, btn0, btn2, pswd, lgbtn])
btn.click(submit, inputs=[user], outputs=[hist_plot, bar_plot2])
btn0.click(submit0, inputs=[user, k], outputs=[hist_plot])
# btn1.click(submit1, inputs=[user, k], outputs=[bar_plot])
btn2.click(submit2, inputs=[user, k], outputs=[bar_plot2])
return demo
def developer_interface(Ufile, Pfile, Sfile=None, job_meta_file=None, user_meta_file=None, user_groups=None):
recdata = Data(Ufile, Pfile, Sfile, job_meta_file, user_meta_file, user_groups, sub_sample_size=500)
def calculate_all_metrics(k, S_sub, U_sub, P_sub):
print('calculating all metrics')
if k in recdata.lookup_dict:
print('Found in lookup dict')
return recdata.lookup_dict[k]
else:
if not torch.is_tensor(P_sub):
P_sub = torch.from_numpy(P_sub)
envy, inferiority, utility = eiu_cut_off2(
(S_sub, U_sub), P_sub, k=k, agg=False)
envy = envy.sum(-1)
inferiority = inferiority.sum(-1)
_, rec = torch.topk(P_sub, k=k, dim=1)
rec_onehot = slow_onehot(rec, P_sub)
try:
rec_per_job = rec_onehot.sum(axis=0).numpy()
except:
rec_per_job = rec_onehot.sum(axis=0).cpu().numpy()
rec = rec.cpu()
metrics_at_k = {'rec': rec, 'envy': envy, 'inferiority': inferiority, 'utility': utility,
'rec_per_job': rec_per_job}
print('Finished calculating all metrics')
return metrics_at_k
def plot_user_box(metrics_dict):
print('plotting user box')
plt.close('all')
envy = metrics_dict['envy'].numpy()
inferiority = metrics_dict['inferiority'].numpy()
fig, (ax1, ax2) = plt.subplots(ncols=2, constrained_layout = True)
# fig.tight_layout()
ax1.boxplot(envy)
ax1.set_ylabel('Envy', fontsize=18)
# ax1.set_title('Envy', fontsize=18)
ax1.set_xticks([])
ax2.boxplot(inferiority)
ax2.yaxis.set_label_position("right")
ax2.yaxis.tick_right()
ax2.set_ylabel('Inferiority', fontsize=18)
# ax2.set_title('Inferiority', fontsize=18)
ax2.set_xticks([])
return fig
def plot_scatter(k, group=None):
print('plotting scatter')
plt.close('all')
if group == 'None':
group = None
if k in recdata.lookup_dict:
metrics_dict = recdata.lookup_dict[k]
else:
metrics_dict = calculate_all_metrics(k, recdata.S_sub, recdata.U_sub, recdata.P_sub)
recdata.lookup_dict[k] = metrics_dict
data = {'log(envy+1)': np.log(metrics_dict['envy']+1),
'inferiority': metrics_dict['inferiority']}
data = pd.DataFrame(data)
data = data.join(recdata.user_metadata)
fig, ax = plt.subplots(constrained_layout = True)
sns.scatterplot(data=data, x='log(envy+1)', y='inferiority', hue=group, ax=ax)
ax.set_xlabel('Log(envy+1)', fontsize=18)
ax.set_ylabel('Inferiority', fontsize=18)
ax.legend(fontsize=15)
return fig
def lorenz_curve(X, ax, label):
# ref: https://zhiyzuo.github.io/Plot-Lorenz/
X.sort()
X_lorenz = X.cumsum() / X.sum()
X_lorenz = np.insert(X_lorenz, 0, 0)
X_lorenz[0], X_lorenz[-1]
ax.plot(np.arange(X_lorenz.size) / (X_lorenz.size - 1), X_lorenz, label=label)
## line plot of equality
ax.plot([0, 1], [0, 1], linestyle='dashed', color='k', label='Line of Equality')
ax.legend(fontsize=15)
ax.set_xlabel('Percentage of jobs', fontsize=18)
ax.set_ylabel('Percentage of job exposure', fontsize=18)
return ax
def plot_item(rec_per_job):
print('plotting item')
plt.close('all')
fig, (ax1, ax2) = plt.subplots(nrows=2, figsize=(10, 10))
fig.tight_layout(pad=5.0)
labels, counts = np.unique(rec_per_job, return_counts=True)
ax1.bar(labels, counts, align='center')
ax1.set_xlabel('Number of times a job is recommended', fontsize=18)
ax1.set_ylabel('Number of jobs', fontsize=18)
ax1.set_title('Distribution of job exposure', fontsize=18)
ax2 = lorenz_curve(rec_per_job, ax2,'Lorenz Curve')
# ax2.set_title('Lorenz Curve', fontsize=18)
return fig
# build the interface
demo = gr.Blocks(gr.themes.Soft())
with demo:
# callbacks
def submit_u():
# generate two random integers including 0 representing user num and job num
user_num = np.random.randint(0, 5)
job_num = np.random.randint(0, 5)
if user_num > 0 or job_num > 0:
recdata.update(user_num, job_num)
return{
info: gr.update(value='New {} users and {} jobs'.format(user_num, job_num),visible=True),
}
def submit1(k):
metrics_dict = calculate_all_metrics(k, recdata.S_sub, recdata.U_sub, recdata.P_sub)
return {
user_box_plot: plot_user_box(metrics_dict),
scatter_plot: plot_scatter(k),
btn2: gr.update(visible=True)
}
def submit2():
return {
radio: gr.update(visible=True)
}
def submit3(k):
metrics_dict = calculate_all_metrics(k, recdata.S_sub, recdata.U_sub, recdata.P_sub)
return {
item_plots: plot_item(metrics_dict['rec_per_job'])
}
# layout
gr.Markdown("## Envy & Inferiority Monitor for Developers Demo")
# 1. accept k
with gr.Row():
with gr.Column(scale=1):
k = gr.inputs.Slider(minimum=1, maximum=min(30,len(
recdata.P[0])), default=1, step=1, label='Number of Jobs')
with gr.Column(scale=1):
btn = gr.Button('Refresh')
with gr.Column(scale=1):
info = gr.Textbox('', label='Updated info', visible=False)
btn.click(submit_u, inputs=[], outputs=[info])
with gr.Tab('User'):
plt.close('all')
btn1 = gr.Button('Visualize user-side fairness')
user_box_plot = gr.Plot()
scatter_plot = gr.Plot()
btn2 = gr.Button('Visualize intra-group fairness', visible=False)
radio = gr.Radio(choices=user_groups, value=user_groups[0] if len(user_groups) > 0 else "",
interactive=True, label="User group", visible=False)
btn1.click(submit1, inputs=[k], outputs=[
user_box_plot, scatter_plot, btn2])
btn2.click(submit2, inputs=[], outputs=[radio])
radio.change(fn=plot_scatter, inputs=[
k, radio], outputs=[scatter_plot])
with gr.Tab('Item'):
plt.close('all')
btn3 = gr.Button('Visualize item-side fairness')
item_plots = gr.Plot()
btn3.click(submit3, inputs=[k], outputs=[item_plots])
return demo
@hydra.main(version_base=None, config_path='./utils', config_name='monitor')
def main(config: DictConfig):
print(config)
Ufile = config.Ufile
Sfile = config.Sfile
Pfile = config.Pfile
user_meta_file = config.user_meta_file
job_meta_file = config.job_meta_file
user_groups = ['None'] + \
list(config.user_groups) if config.user_groups else ['None']
server_name = config.server_name
role = config.role
if role == 'user':
demo = user_interface(Ufile, Pfile, Sfile,
job_meta_file, user_meta_file, user_groups)
elif role == 'developer':
demo = developer_interface(
Ufile, Pfile, Sfile, job_meta_file, user_meta_file, user_groups)
# demo.launch(server_name=server_name, server_port=config.server_port)
demo.launch()
if __name__ == "__main__":
main()