Spaces:
Sleeping
Sleeping
File size: 16,660 Bytes
c3279e7 bc7ad4c c3279e7 66db652 c3279e7 d67fcd9 66db652 c3279e7 66db652 c3279e7 66db652 c3279e7 66db652 c3279e7 66db652 c3279e7 66db652 c3279e7 66db652 c3279e7 66db652 c3279e7 66db652 c3279e7 66db652 c3279e7 d67fcd9 c3279e7 66db652 d67fcd9 c3279e7 008a8a2 bc7ad4c c3279e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 |
import sys
from pathlib import Path
import string
import random
import torch
import numpy as np
import pickle
import gradio as gr
import pandas as pd
from scipy.special import softmax
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import hydra
from omegaconf import open_dict, DictConfig
import matplotlib.pyplot as plt
import matplotlib
from matplotlib.patches import Patch
sns.set()
sns.set_style("darkgrid")
from utils.data import *
from utils.metrics import *
def user_interface(Ufile, Pfile, Sfile=None, job_meta_file=None, user_meta_file=None, user_groups=None):
recdata = Data(Ufile, Pfile, Sfile, job_meta_file, user_meta_file, user_groups)
def calculate_user_item_metrics(res, S, U, k=10):
# get rec
m, n = res.shape
if not torch.is_tensor(res):
res = torch.from_numpy(res)
if not torch.is_tensor(U):
U = torch.from_numpy(U)
_, rec = torch.topk(res, k, dim=1)
rec_onehot = slow_onehot(rec, res)
# rec_onehot = F.one_hot(rec, num_classes=n).sum(1).float()
try:
rec_per_job = rec_onehot.sum(axis=0).numpy()
except:
rec_per_job = rec_onehot.sum(axis=0).cpu().numpy()
rec = rec.cpu()
S = S.cpu()
# envy
envy = expected_envy_torch_vec(U, rec_onehot, k=1).numpy()
# competitors for each rec job
competitors = get_competitors(rec_per_job, rec)
# rank
better_competitors = get_num_better_competitors(rec, S)
# scores per job for later zoom in scores
scores = get_scores_per_job(rec, S)
return {'rec': rec, 'envy': envy, 'competitors': competitors, 'ranks': better_competitors, 'scores_job': scores}
def plot_user_envy(user=0, k=2):
plt.close('all')
user = int(user)
if k in recdata.lookup_dict:
ret_dict = recdata.lookup_dict[k]
else:
ret_dict = calculate_user_item_metrics(recdata.P_sub, recdata.S_sub, recdata.U_sub, k=k)
recdata.lookup_dict[k] = ret_dict
# user's recommended jobs
users_rec = ret_dict['rec'][user].numpy()
# Plot
fig, ax1 = plt.subplots(figsize=(10, 5))
# fig.tight_layout()
fig.subplots_adjust(bottom=0.2)
envy = ret_dict['envy'].sum(-1)
envy_user = envy[user]
# plot envy histogram
n, bins, patches = ax1.hist(envy, bins=30, color='grey', alpha=0.5)
ax1.set_yscale('symlog')
sns.kdeplot(envy, color='grey', bw_adjust=0.3, cut=0, ax=ax1)
# mark this user's envy
# index of the bin that contains this user's envy
idx = np.digitize(envy_user, bins)
# print(envy_user, idx)
patches[idx-1].set_fc('r')
ax1.legend(handles=[Patch(facecolor='r', edgecolor='r', alpha=0.5,
label='Your envy level')], fontsize=15)
ax1.set_xlabel('Envy', fontsize=18)
ax1.set_ylabel('Number of users (log scale)', fontsize=18)
return fig
def plot_user_scores(user=0, k=2):
user = int(user)
if k in recdata.lookup_dict:
ret_dict = recdata.lookup_dict[k]
else:
ret_dict = calculate_user_item_metrics(recdata.P_sub, recdata.S_sub, recdata.U_sub, k=k)
recdata.lookup_dict[k] = ret_dict
users_rec = ret_dict['rec'][user].numpy()
scores = ret_dict['scores_job']
# scores = [softmax(np.array(scores[jb])*0.5) for jb in users_rec]
scores = [scores[jb] for jb in users_rec]
rank_xs = [list(range(1, len(s)+1)) for s in scores]
my_ranks = [1+int(i) for i in ret_dict['ranks'][user]]
# my scores are the scores of the recommended jobs with rank
# my_scores = [scores[i][j] for i, j in enumerate(my_ranks)]
my_scores = [recdata.S_sub[user, job_id].item() for job_id in users_rec]
# my_scores_log = np.log(np.array(my_scores).astype(float))
ys = np.arange(len(users_rec))
# user's recommended jobs
if (user, k) in recdata.user_temp_data:
df = recdata.user_temp_data[(user, k)]
else:
df = pd.DataFrame({'x': rank_xs, 's': scores, 'y': ys})
df = df.explode(list('xs'))
recdata.user_temp_data[(user, k)] = df
# df['log_scores'] = np.log(df['s'].values.astype(float))
fig, ax = plt.subplots(figsize=(10, 5))
# fig.tight_layout()
fig.subplots_adjust(bottom=0.3)
def sub_cmap(cmap, vmin, vmax):
return lambda v: cmap(vmin + (vmax - vmin) * v)
# palette=matplotlib.cm.get_cmap('Greens').reversed()
# palette = sub_cmap(palette,0.2, 0.8)
sns.scatterplot(data=df, x="y", y="s", ax=ax, alpha=0.6,
legend=False, s=100, hue='y', palette="summer") #monotone color palette
sns.scatterplot(y=my_scores, x=range(k), ax=ax,
alpha=0.8, s=200, ec='r', fc='none', label='Your rank')
# add ranking of this user's score for each job
# find score gaps
gaps = np.diff(np.sort(scores[0])).mean()
for i, (y, x) in enumerate(zip(my_scores, range(k))):
ax.text(x-0.3, y+gaps, my_ranks[i], color='r', fontsize=15)
# add notation for 'rank'
# ax.text(-0.8, 1.12, 'Your rank', color='r', fontsize=12)
ax.set_xticks(range(k))
# shorten the job title
titles = [recdata.job_metadata[jb] for jb in users_rec]
titles = [t[:15] + '...' if len(t) > 15 else t for t in titles]
ax.set_xticklabels(titles, rotation=25, ha='right', fontsize=15)
ax.set_xlabel('')
ax.set_xlim(-1, k)
# ax.grid(False)
ax.set_ylabel('Score', fontsize=18)
# ax.set_ylim(-0.09, 1.2)
ax.legend(fontsize=15)
return fig
# demo = gr.Blocks(gr.themes.Base.from_hub('finlaymacklon/smooth_slate'))
demo = gr.Blocks(gr.themes.Soft())
with demo:
def submit0(user, k):
fig = plot_user_envy(user, k)
return {
hist_plot: gr.update(value=fig, visible=True),
}
def submit2(user, k):
bar = plot_user_scores(user, k)
return {
bar_plot2: gr.update(value=bar, visible=True)
}
def submit(user):
new_job_num = random.randint(1,6)
# if new_job_num == 0, do nothing but clear the plots
if new_job_num > 0:
print(f'adding {new_job_num} new jobs')
recdata.update(new_user_num=0, new_job_num=new_job_num)
recdata.tweak_P(user)
return {
hist_plot: gr.update(visible=False),
bar_plot2: gr.update(visible=False)
}
# def submit_login(user):
# return {
# k: gr.update(visible=True),
# btn: gr.update(visible=True),
# btn0: gr.update(visible=True),
# btn2: gr.update(visible=True),
# pswd: gr.update(visible=False),
# lgbtn: gr.update(visible=False),
# }
# layout
gr.Markdown("## Job Recommendation Inferiority and Envy Monitor Demo")
with gr.Row():
with gr.Column(scale=1):
user = gr.Textbox(label='User ID',default='0', placeholder='Enter a random integer user ID')
# with gr.Column(scale=1):
# pswd = gr.Textbox(label='Password',default='********')
# with gr.Column(scale=1):
# lgbtn = gr.Button("Login")
# with gr.Row():
with gr.Column(scale=1):
k = gr.Slider(minimum=1, maximum=20,
default=4, step=1, label='Number of Jobs', visible=True)
with gr.Column(scale=1):
btn = gr.Button("Refresh to see new jobs", visible=True)
with gr.Tab('Envy'):
btn0 = gr.Button("User envy distribution", visible=True)
hist_plot = gr.Plot(visible=False)
with gr.Tab('Inferiority'):
with gr.Row():
# btn1 = gr.Button("User ranks for the recommended jobs")
btn2 = gr.Button("User scores/ranks for the recommended jobs", visible=True)
# bar_plot = gr.Plot()
bar_plot2 = gr.Plot(visible=False)
# lgbtn.click(submit_login, inputs=[user], outputs=[k, btn, btn0, btn2, pswd, lgbtn])
btn.click(submit, inputs=[user], outputs=[hist_plot, bar_plot2])
btn0.click(submit0, inputs=[user, k], outputs=[hist_plot])
# btn1.click(submit1, inputs=[user, k], outputs=[bar_plot])
btn2.click(submit2, inputs=[user, k], outputs=[bar_plot2])
return demo
def developer_interface(Ufile, Pfile, Sfile=None, job_meta_file=None, user_meta_file=None, user_groups=None):
recdata = Data(Ufile, Pfile, Sfile, job_meta_file, user_meta_file, user_groups, sub_sample_size=500)
def calculate_all_metrics(k, S_sub, U_sub, P_sub):
print('calculating all metrics')
if k in recdata.lookup_dict:
print('Found in lookup dict')
return recdata.lookup_dict[k]
else:
if not torch.is_tensor(P_sub):
P_sub = torch.from_numpy(P_sub)
envy, inferiority, utility = eiu_cut_off2(
(S_sub, U_sub), P_sub, k=k, agg=False)
envy = envy.sum(-1)
inferiority = inferiority.sum(-1)
_, rec = torch.topk(P_sub, k=k, dim=1)
rec_onehot = slow_onehot(rec, P_sub)
try:
rec_per_job = rec_onehot.sum(axis=0).numpy()
except:
rec_per_job = rec_onehot.sum(axis=0).cpu().numpy()
rec = rec.cpu()
metrics_at_k = {'rec': rec, 'envy': envy, 'inferiority': inferiority, 'utility': utility,
'rec_per_job': rec_per_job}
print('Finished calculating all metrics')
return metrics_at_k
def plot_user_box(metrics_dict):
print('plotting user box')
plt.close('all')
envy = metrics_dict['envy'].numpy()
inferiority = metrics_dict['inferiority'].numpy()
fig, (ax1, ax2) = plt.subplots(ncols=2, constrained_layout = True)
# fig.tight_layout()
ax1.boxplot(envy)
ax1.set_ylabel('Envy', fontsize=18)
# ax1.set_title('Envy', fontsize=18)
ax1.set_xticks([])
ax2.boxplot(inferiority)
ax2.yaxis.set_label_position("right")
ax2.yaxis.tick_right()
ax2.set_ylabel('Inferiority', fontsize=18)
# ax2.set_title('Inferiority', fontsize=18)
ax2.set_xticks([])
return fig
def plot_scatter(k, group=None):
print('plotting scatter')
plt.close('all')
if group == 'None':
group = None
if k in recdata.lookup_dict:
metrics_dict = recdata.lookup_dict[k]
else:
metrics_dict = calculate_all_metrics(k, recdata.S_sub, recdata.U_sub, recdata.P_sub)
recdata.lookup_dict[k] = metrics_dict
data = {'log(envy+1)': np.log(metrics_dict['envy']+1),
'inferiority': metrics_dict['inferiority']}
data = pd.DataFrame(data)
data = data.join(recdata.user_metadata)
fig, ax = plt.subplots(constrained_layout = True)
sns.scatterplot(data=data, x='log(envy+1)', y='inferiority', hue=group, ax=ax)
ax.set_xlabel('Log(envy+1)', fontsize=18)
ax.set_ylabel('Inferiority', fontsize=18)
ax.legend(fontsize=15)
return fig
def lorenz_curve(X, ax, label):
# ref: https://zhiyzuo.github.io/Plot-Lorenz/
X.sort()
X_lorenz = X.cumsum() / X.sum()
X_lorenz = np.insert(X_lorenz, 0, 0)
X_lorenz[0], X_lorenz[-1]
ax.plot(np.arange(X_lorenz.size) / (X_lorenz.size - 1), X_lorenz, label=label)
## line plot of equality
ax.plot([0, 1], [0, 1], linestyle='dashed', color='k', label='Line of Equality')
ax.legend(fontsize=15)
ax.set_xlabel('Percentage of jobs', fontsize=18)
ax.set_ylabel('Percentage of job exposure', fontsize=18)
return ax
def plot_item(rec_per_job):
print('plotting item')
plt.close('all')
fig, (ax1, ax2) = plt.subplots(nrows=2, figsize=(10, 10))
fig.tight_layout(pad=5.0)
labels, counts = np.unique(rec_per_job, return_counts=True)
ax1.bar(labels, counts, align='center')
ax1.set_xlabel('Number of times a job is recommended', fontsize=18)
ax1.set_ylabel('Number of jobs', fontsize=18)
ax1.set_title('Distribution of job exposure', fontsize=18)
ax2 = lorenz_curve(rec_per_job, ax2,'Lorenz Curve')
# ax2.set_title('Lorenz Curve', fontsize=18)
return fig
# build the interface
demo = gr.Blocks(gr.themes.Soft())
with demo:
# callbacks
def submit_u():
# generate two random integers including 0 representing user num and job num
user_num = np.random.randint(0, 5)
job_num = np.random.randint(0, 5)
if user_num > 0 or job_num > 0:
recdata.update(user_num, job_num)
return{
info: gr.update(value='New {} users and {} jobs'.format(user_num, job_num),visible=True),
}
def submit1(k):
metrics_dict = calculate_all_metrics(k, recdata.S_sub, recdata.U_sub, recdata.P_sub)
return {
user_box_plot: plot_user_box(metrics_dict),
scatter_plot: plot_scatter(k),
btn2: gr.update(visible=True)
}
def submit2():
return {
radio: gr.update(visible=True)
}
def submit3(k):
metrics_dict = calculate_all_metrics(k, recdata.S_sub, recdata.U_sub, recdata.P_sub)
return {
item_plots: plot_item(metrics_dict['rec_per_job'])
}
# layout
gr.Markdown("## Envy & Inferiority Monitor for Developers Demo")
# 1. accept k
with gr.Row():
with gr.Column(scale=1):
k = gr.inputs.Slider(minimum=1, maximum=min(30,len(
recdata.P[0])), default=1, step=1, label='Number of Jobs')
with gr.Column(scale=1):
btn = gr.Button('Refresh')
with gr.Column(scale=1):
info = gr.Textbox('', label='Updated info', visible=False)
btn.click(submit_u, inputs=[], outputs=[info])
with gr.Tab('User'):
plt.close('all')
btn1 = gr.Button('Visualize user-side fairness')
user_box_plot = gr.Plot()
scatter_plot = gr.Plot()
btn2 = gr.Button('Visualize intra-group fairness', visible=False)
radio = gr.Radio(choices=user_groups, value=user_groups[0] if len(user_groups) > 0 else "",
interactive=True, label="User group", visible=False)
btn1.click(submit1, inputs=[k], outputs=[
user_box_plot, scatter_plot, btn2])
btn2.click(submit2, inputs=[], outputs=[radio])
radio.change(fn=plot_scatter, inputs=[
k, radio], outputs=[scatter_plot])
with gr.Tab('Item'):
plt.close('all')
btn3 = gr.Button('Visualize item-side fairness')
item_plots = gr.Plot()
btn3.click(submit3, inputs=[k], outputs=[item_plots])
return demo
@hydra.main(version_base=None, config_path='./utils', config_name='monitor')
def main(config: DictConfig):
print(config)
Ufile = config.Ufile
Sfile = config.Sfile
Pfile = config.Pfile
user_meta_file = config.user_meta_file
job_meta_file = config.job_meta_file
user_groups = ['None'] + \
list(config.user_groups) if config.user_groups else ['None']
server_name = config.server_name
role = config.role
if role == 'user':
demo = user_interface(Ufile, Pfile, Sfile,
job_meta_file, user_meta_file, user_groups)
elif role == 'developer':
demo = developer_interface(
Ufile, Pfile, Sfile, job_meta_file, user_meta_file, user_groups)
# demo.launch(server_name=server_name, server_port=config.server_port)
demo.launch()
if __name__ == "__main__":
main()
|