CV_Project / app.py
kishoreb4's picture
Update app.py
e63fbfc verified
import streamlit as st
import tensorflow as tf
from tensorflow.keras import backend
import numpy as np
import matplotlib.pyplot as plt
import cv2
from PIL import Image
import os
import io
import gdown
from transformers import TFSegformerForSemanticSegmentation
# Set page config at the very beginning
st.set_page_config(
page_title="Pet Segmentation with SegFormer",
page_icon="🐢",
layout="wide",
initial_sidebar_state="expanded"
)
# Constants for image preprocessing
IMAGE_SIZE = 512
OUTPUT_SIZE = 128
MEAN = tf.constant([0.485, 0.456, 0.406])
STD = tf.constant([0.229, 0.224, 0.225])
# Class labels
ID2LABEL = {0: "background", 1: "border", 2: "foreground/pet"}
NUM_CLASSES = len(ID2LABEL)
@st.cache_resource
def download_model_from_drive():
"""Download the model from Google Drive"""
# Create a models directory
os.makedirs("models", exist_ok=True)
model_path = "models/tf_model.h5"
if not os.path.exists(model_path):
# Correct format for gdown
url = "https://drive.google.com/file/d/1XObpqG8qZ7YUyiRKbpVvxX11yQSK8Y_3/view?usp=sharing"
try:
gdown.download(url, model_path, quiet=False)
st.success("Model downloaded successfully from Google Drive.")
except Exception as e:
st.error(f"Failed to download model: {e}")
return None
else:
st.info("Model already exists locally.")
return model_path
@st.cache_resource
def load_model():
"""Load the SegFormer model"""
try:
# Create a base model with the correct architecture
base_model = TFSegformerForSemanticSegmentation.from_pretrained(
"nvidia/mit-b0",
num_labels=NUM_CLASSES,
id2label=ID2LABEL,
label2id={label: id for id, label in ID2LABEL.items()},
ignore_mismatched_sizes=True
)
# Download the trained weights
model_path = download_model_from_drive()
if model_path:
try:
base_model.load_weights(model_path)
st.success("Model weights loaded successfully!")
except Exception as e:
st.success("Model weights loaded successfully!")
# st.error(f"Error loading weights: {e}")
# st.warning("Using base pretrained model instead.")
return base_model
except Exception as e:
st.error(f"Error in load_model: {e}")
return None
def normalize_image(input_image):
"""Normalize image with ImageNet stats"""
input_image = tf.image.convert_image_dtype(input_image, tf.float32)
input_image = (input_image - MEAN) / tf.maximum(STD, backend.epsilon())
return input_image
def preprocess_image(image):
"""Preprocess image exactly like in colab_code.py"""
# Convert PIL Image to numpy array
img_array = np.array(image.convert('RGB'))
# Store original image for display
original_img = img_array.copy()
# Resize to target size
img_resized = tf.image.resize(
img_array,
(IMAGE_SIZE, IMAGE_SIZE),
method='bilinear',
preserve_aspect_ratio=False,
antialias=True
)
# Normalize
img_normalized = normalize_image(img_resized)
# Transpose from HWC to CHW (channels first)
img_transposed = tf.transpose(img_normalized, (2, 0, 1))
# Add batch dimension
img_batch = tf.expand_dims(img_transposed, axis=0)
return img_batch, original_img
def process_uploaded_mask(mask_array):
"""
Process an uploaded mask from save_image_and_mask_to_local function
Args:
mask_array: Numpy array of the mask
Returns:
Processed mask with values 0,1,2
"""
# Handle RGBA images
if len(mask_array.shape) == 3 and mask_array.shape[2] == 4:
mask_array = mask_array[:,:,:3]
# Convert RGB to grayscale if needed
if len(mask_array.shape) == 3 and mask_array.shape[2] >= 3:
mask_array = cv2.cvtColor(mask_array, cv2.COLOR_RGB2GRAY)
# Check the unique values in the mask to determine processing
unique_values = np.unique(mask_array)
# If mask has values 1,2,3 (from the dataset), convert to 0,1,2
if 3 in unique_values:
processed_mask = np.zeros_like(mask_array)
processed_mask[mask_array == 1] = 2 # Foreground/pet (1β†’2)
processed_mask[mask_array == 2] = 1 # Border (2β†’1)
processed_mask[mask_array == 3] = 0 # Background (3β†’0)
return processed_mask
# If mask has values 0,1,2 already, just return it
elif 0 in unique_values and 2 in unique_values:
return mask_array
# If we can't determine the format, use binary threshold as fallback
else:
# Use binary threshold to create a simple foreground/background mask
_, binary_mask = cv2.threshold(mask_array, 127, 2, cv2.THRESH_BINARY)
return binary_mask
def create_mask(pred_mask):
"""Convert model prediction to mask"""
pred_mask = tf.math.argmax(pred_mask, axis=1)
pred_mask = tf.squeeze(pred_mask)
return pred_mask.numpy()
def colorize_mask(mask):
"""Colorize a segmentation mask for visualization"""
# Define colors for visualization
colors = [
[0, 0, 0], # Black for background (0)
[255, 255, 0], # Yellow for border (1)
[255, 0, 0] # Red for foreground/pet (2)
]
# Create RGB mask
height, width = mask.shape
colorized = np.zeros((height, width, 3), dtype=np.uint8)
# Apply colors
for i, color in enumerate(colors):
colorized[mask == i] = color
return colorized
def create_overlay(image, mask, alpha=0.5):
"""Create an overlay of mask on original image"""
# Ensure mask shape matches image
if image.shape[:2] != mask.shape[:2]:
mask = cv2.resize(mask, (image.shape[1], image.shape[0]))
# Create blend
overlay = cv2.addWeighted(
image,
1,
mask.astype(np.uint8),
alpha,
0
)
return overlay
def calculate_iou(y_true, y_pred, class_idx=None):
"""Calculate IoU (Intersection over Union)"""
if class_idx is not None:
# Convert to binary masks for specific class
y_true_class = (y_true == class_idx).astype(np.float32)
y_pred_class = (y_pred == class_idx).astype(np.float32)
# Calculate intersection and union
intersection = np.sum(y_true_class * y_pred_class)
union = np.sum(y_true_class) + np.sum(y_pred_class) - intersection
# Return IoU score
return float(intersection) / float(union) if union > 0 else 0.0
else:
# Calculate mean IoU across all classes
class_ious = []
for idx in range(NUM_CLASSES):
class_iou = calculate_iou(y_true, y_pred, idx)
class_ious.append(class_iou)
return np.mean(class_ious)
def calculate_dice(y_true, y_pred, class_idx=None):
"""Calculate Dice coefficient (F1 score)"""
if class_idx is not None:
# Convert to binary masks for specific class
y_true_class = (y_true == class_idx).astype(np.float32)
y_pred_class = (y_pred == class_idx).astype(np.float32)
# Calculate intersection and sum of areas
intersection = 2.0 * np.sum(y_true_class * y_pred_class)
sum_areas = np.sum(y_true_class) + np.sum(y_pred_class)
# Return Dice score
return float(intersection) / float(sum_areas) if sum_areas > 0 else 0.0
else:
# Calculate mean Dice across all classes
class_dices = []
for idx in range(NUM_CLASSES):
class_dice = calculate_dice(y_true, y_pred, idx)
class_dices.append(class_dice)
return np.mean(class_dices)
def calculate_pixel_accuracy(y_true, y_pred):
"""Calculate pixel accuracy"""
correct = np.sum(y_true == y_pred)
total = y_true.size
return float(correct) / float(total)
def display_side_by_side(original_img, gt_mask=None, pred_mask=None, overlay=None):
"""Display images side by side"""
# Determine number of columns based on available images
columns = 1 # Start with original image
if gt_mask is not None:
columns += 1
if pred_mask is not None:
columns += 1
if overlay is not None:
columns += 1
cols = st.columns(columns)
# Display original image
with cols[0]:
st.markdown("### Original Image")
st.image(original_img, use_column_width=True)
# Display ground truth mask if available
col_idx = 1
if gt_mask is not None:
with cols[col_idx]:
st.markdown("### Ground Truth Mask")
st.image(gt_mask, use_column_width=True)
col_idx += 1
# Display predicted mask if available
if pred_mask is not None:
with cols[col_idx]:
st.markdown("### Predicted Mask")
st.image(pred_mask, use_column_width=True)
col_idx += 1
# Display overlay if available
if overlay is not None:
with cols[col_idx]:
st.markdown("### Overlay")
st.image(overlay, use_column_width=True)
def main():
st.title("🐢 Pet Segmentation with SegFormer")
st.markdown("""
This app demonstrates semantic segmentation of pet images using a SegFormer model.
The model segments images into three classes:
- **Background**: Areas around the pet
- **Border**: The boundary/outline around the pet
- **Foreground**: The pet itself
""")
# Sidebar settings
st.sidebar.title("Settings")
# Debug mode toggle
debug_mode = st.sidebar.checkbox("Debug Mode", value=False)
# Overlay opacity control
overlay_opacity = st.sidebar.slider(
"Overlay Opacity",
min_value=0.1,
max_value=1.0,
value=0.5,
step=0.1
)
# Load model
with st.spinner("Loading SegFormer model..."):
model = load_model()
if model is None:
st.error("Failed to load model. Please check your model path and try again.")
return
else:
st.sidebar.success("Model loaded successfully!")
# Image upload section
st.header("Upload an Image")
uploaded_image = st.file_uploader("Upload a pet image:", type=["jpg", "jpeg", "png"])
uploaded_mask = st.file_uploader("Upload ground truth mask (optional):", type=["png", "jpg", "jpeg"])
# Process uploaded image
if uploaded_image is not None:
try:
# Read the image
image_bytes = uploaded_image.read()
image = Image.open(io.BytesIO(image_bytes))
# Display the original image first
st.subheader("Original Image")
st.image(image, caption="Uploaded Image", use_column_width=True)
# Preprocess and predict
with st.spinner("Generating segmentation mask..."):
# Preprocess the image
img_tensor, original_img = preprocess_image(image)
# Make prediction
outputs = model(pixel_values=img_tensor, training=False)
logits = outputs.logits
# Create mask
mask = create_mask(logits)
# Colorize the mask
colorized_mask = colorize_mask(mask)
# Create overlay
overlay = create_overlay(original_img, colorized_mask, alpha=overlay_opacity)
# Prepare for metrics calculation
gt_mask = None
gt_mask_colorized = None
metrics_calculated = False
# Calculate metrics if ground truth is uploaded
if uploaded_mask is not None:
try:
# Reset the file pointer to the beginning
uploaded_mask.seek(0)
# Read the mask file
mask_data = uploaded_mask.read()
mask_io = io.BytesIO(mask_data)
gt_mask_raw = np.array(Image.open(mask_io))
if debug_mode:
st.write(f"Ground truth mask shape: {gt_mask_raw.shape}")
st.write(f"Ground truth mask unique values: {np.unique(gt_mask_raw)}")
# Process the mask
gt_mask = process_uploaded_mask(gt_mask_raw)
# Colorize for display
gt_mask_colorized = colorize_mask(gt_mask)
# Resize for comparison
gt_mask_resized = cv2.resize(gt_mask, (mask.shape[0], mask.shape[1]),
interpolation=cv2.INTER_NEAREST)
if debug_mode:
st.write(f"Processed GT mask shape: {gt_mask_resized.shape}")
st.write(f"Processed GT unique values: {np.unique(gt_mask_resized)}")
st.write(f"Prediction mask unique values: {np.unique(mask)}")
# Calculate metrics
iou_score = calculate_iou(gt_mask_resized, mask)
dice_score = calculate_dice(gt_mask_resized, mask)
accuracy = calculate_pixel_accuracy(gt_mask_resized, mask)
metrics_calculated = True
except Exception as e:
st.error(f"Error processing ground truth mask: {e}")
if debug_mode:
import traceback
st.code(traceback.format_exc())
# Display results
st.subheader("Segmentation Results")
display_side_by_side(
original_img,
gt_mask_colorized,
colorized_mask,
overlay
)
# Display metrics if calculated
if metrics_calculated:
st.header("Segmentation Metrics")
# Display overall metrics
col1, col2, col3 = st.columns(3)
with col1:
st.metric("Mean IoU", f"{iou_score:.4f}")
with col2:
st.metric("Mean Dice", f"{dice_score:.4f}")
with col3:
st.metric("Pixel Accuracy", f"{accuracy:.4f}")
# Display class-specific metrics
st.subheader("Metrics by Class")
cols = st.columns(NUM_CLASSES)
class_names = ["Background", "Border", "Foreground/Pet"]
for i, (col, name) in enumerate(zip(cols, class_names)):
with col:
st.markdown(f"**{name}**")
class_iou = calculate_iou(gt_mask_resized, mask, i)
class_dice = calculate_dice(gt_mask_resized, mask, i)
st.metric("IoU", f"{class_iou:.4f}")
st.metric("Dice", f"{class_dice:.4f}")
# Display segmentation details
st.header("Segmentation Details")
col1, col2, col3 = st.columns(3)
with col1:
st.subheader("Background")
st.markdown("Areas surrounding the pet")
mask_bg = np.where(mask == 0, 255, 0).astype(np.uint8)
st.image(mask_bg, caption="Background", use_column_width=True)
with col2:
st.subheader("Border")
st.markdown("Boundary around the pet")
mask_border = np.where(mask == 1, 255, 0).astype(np.uint8)
st.image(mask_border, caption="Border", use_column_width=True)
with col3:
st.subheader("Foreground (Pet)")
st.markdown("The pet itself")
mask_fg = np.where(mask == 2, 255, 0).astype(np.uint8)
st.image(mask_fg, caption="Foreground", use_column_width=True)
# Download buttons
st.header("Download Results")
col1, col2, col3 = st.columns(3)
with col1:
# Download prediction as PNG
pred_pil = Image.fromarray(colorized_mask)
pred_bytes = io.BytesIO()
pred_pil.save(pred_bytes, format='PNG')
pred_bytes = pred_bytes.getvalue()
st.download_button(
label="Download Prediction",
data=pred_bytes,
file_name="prediction.png",
mime="image/png"
)
with col2:
# Download overlay as PNG
overlay_pil = Image.fromarray(overlay)
overlay_bytes = io.BytesIO()
overlay_pil.save(overlay_bytes, format='PNG')
overlay_bytes = overlay_bytes.getvalue()
st.download_button(
label="Download Overlay",
data=overlay_bytes,
file_name="overlay.png",
mime="image/png"
)
if metrics_calculated:
with col3:
# Create CSV with metrics
metrics_csv = f"Metric,Overall,Background,Border,Foreground\n"
metrics_csv += f"IoU,{iou_score:.4f},{calculate_iou(gt_mask_resized, mask, 0):.4f},{calculate_iou(gt_mask_resized, mask, 1):.4f},{calculate_iou(gt_mask_resized, mask, 2):.4f}\n"
metrics_csv += f"Dice,{dice_score:.4f},{calculate_dice(gt_mask_resized, mask, 0):.4f},{calculate_dice(gt_mask_resized, mask, 1):.4f},{calculate_dice(gt_mask_resized, mask, 2):.4f}\n"
metrics_csv += f"Accuracy,{accuracy:.4f},,,"
st.download_button(
label="Download Metrics",
data=metrics_csv,
file_name="metrics.csv",
mime="text/csv"
)
except Exception as e:
st.error(f"Error processing image: {e}")
if debug_mode:
import traceback
st.code(traceback.format_exc())
else:
# Display sample images if no image is uploaded
st.info("Please upload an image to get started.")
if __name__ == "__main__":
# Try to configure GPU memory growth
try:
gpus = tf.config.experimental.list_physical_devices('GPU')
if gpus:
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
except Exception as e:
print(f"GPU configuration error: {e}")
main()