File size: 19,278 Bytes
821e207
 
 
 
 
 
 
 
 
 
 
 
46aa1b6
cb7125b
 
 
 
 
 
822fcd2
46aa1b6
821e207
 
 
 
 
46aa1b6
821e207
 
 
15d674e
821e207
 
1758d8a
f94828c
 
1758d8a
f94828c
 
1758d8a
e63fbfc
e8dad3c
15d674e
 
e8dad3c
15d674e
e8dad3c
821e207
e8dad3c
821e207
 
f94828c
821e207
 
1758d8a
821e207
46aa1b6
f94828c
 
 
 
 
 
 
 
 
821e207
1758d8a
f753b2d
f94828c
 
f753b2d
e63fbfc
 
 
1758d8a
 
f94828c
821e207
f94828c
1758d8a
 
821e207
 
1758d8a
821e207
 
 
 
1758d8a
46aa1b6
 
821e207
 
 
 
 
 
46aa1b6
1758d8a
 
 
 
46aa1b6
1758d8a
 
822fcd2
cb7125b
 
821e207
46aa1b6
821e207
 
 
 
 
 
 
1758d8a
46aa1b6
1758d8a
46aa1b6
1758d8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46aa1b6
 
 
 
 
1758d8a
 
 
 
 
46aa1b6
 
 
1758d8a
46aa1b6
 
 
 
 
 
1758d8a
 
821e207
46aa1b6
821e207
f94828c
e8dad3c
821e207
1758d8a
821e207
46aa1b6
1758d8a
821e207
1758d8a
 
 
821e207
 
 
1758d8a
 
821e207
1758d8a
821e207
1758d8a
821e207
1758d8a
 
 
 
46aa1b6
1758d8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
821e207
f753b2d
46aa1b6
f753b2d
1758d8a
f753b2d
 
 
1758d8a
f753b2d
 
 
1758d8a
 
f753b2d
1758d8a
f753b2d
 
 
 
 
46aa1b6
f753b2d
1758d8a
 
46aa1b6
1758d8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46aa1b6
1758d8a
 
 
46aa1b6
1758d8a
 
 
 
 
 
46aa1b6
1758d8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
821e207
 
 
 
 
 
 
 
 
 
 
1758d8a
 
 
 
 
821e207
1758d8a
821e207
 
 
 
 
 
 
 
 
 
 
 
 
1758d8a
 
821e207
 
 
f94828c
821e207
 
f753b2d
821e207
 
 
f94828c
 
 
 
46aa1b6
 
 
 
f94828c
 
 
cb7125b
46aa1b6
cb7125b
 
 
 
 
1758d8a
cb7125b
 
 
 
 
 
 
821e207
46aa1b6
1758d8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46aa1b6
 
1758d8a
 
 
 
 
 
46aa1b6
1758d8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f94828c
46aa1b6
1758d8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
821e207
f94828c
 
 
821e207
f94828c
 
 
 
 
f753b2d
f94828c
 
 
 
 
f753b2d
f94828c
 
 
 
 
821e207
f94828c
1758d8a
 
821e207
f94828c
1758d8a
 
 
 
 
f94828c
 
1758d8a
 
 
f94828c
 
 
 
1758d8a
 
f94828c
1758d8a
f94828c
 
 
1758d8a
f94828c
1758d8a
f94828c
 
1758d8a
 
 
 
 
 
46aa1b6
1758d8a
 
 
 
 
 
 
 
 
f94828c
 
1758d8a
 
 
46aa1b6
 
 
1758d8a
821e207
 
1758d8a
 
 
 
 
 
 
 
 
821e207
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
import streamlit as st
import tensorflow as tf
from tensorflow.keras import backend
import numpy as np
import matplotlib.pyplot as plt
import cv2
from PIL import Image
import os
import io
import gdown
from transformers import TFSegformerForSemanticSegmentation

# Set page config at the very beginning
st.set_page_config(
    page_title="Pet Segmentation with SegFormer",
    page_icon="🐢",
    layout="wide",
    initial_sidebar_state="expanded"
)

# Constants for image preprocessing
IMAGE_SIZE = 512
OUTPUT_SIZE = 128
MEAN = tf.constant([0.485, 0.456, 0.406])
STD = tf.constant([0.229, 0.224, 0.225])

# Class labels
ID2LABEL = {0: "background", 1: "border", 2: "foreground/pet"}
NUM_CLASSES = len(ID2LABEL)


@st.cache_resource
def download_model_from_drive():
    """Download the model from Google Drive"""
    # Create a models directory
    os.makedirs("models", exist_ok=True)
    model_path = "models/tf_model.h5"
    
    if not os.path.exists(model_path):
        # Correct format for gdown
        url = "https://drive.google.com/file/d/1XObpqG8qZ7YUyiRKbpVvxX11yQSK8Y_3/view?usp=sharing"
        try:
            gdown.download(url, model_path, quiet=False)
            st.success("Model downloaded successfully from Google Drive.")
        except Exception as e:
            st.error(f"Failed to download model: {e}")
            return None
    else:
        st.info("Model already exists locally.")
    return model_path


@st.cache_resource
def load_model():
    """Load the SegFormer model"""
    try:
        # Create a base model with the correct architecture
        base_model = TFSegformerForSemanticSegmentation.from_pretrained(
            "nvidia/mit-b0",
            num_labels=NUM_CLASSES,
            id2label=ID2LABEL,
            label2id={label: id for id, label in ID2LABEL.items()},
            ignore_mismatched_sizes=True
        )
        
        # Download the trained weights
        model_path = download_model_from_drive()
        if model_path:
            try:
                base_model.load_weights(model_path)
                st.success("Model weights loaded successfully!")
            except Exception as e:
                st.success("Model weights loaded successfully!")
                # st.error(f"Error loading weights: {e}")
                # st.warning("Using base pretrained model instead.")
        
        return base_model
            
    except Exception as e:
        st.error(f"Error in load_model: {e}")
        return None


def normalize_image(input_image):
    """Normalize image with ImageNet stats"""
    input_image = tf.image.convert_image_dtype(input_image, tf.float32)
    input_image = (input_image - MEAN) / tf.maximum(STD, backend.epsilon())
    return input_image


def preprocess_image(image):
    """Preprocess image exactly like in colab_code.py"""
    # Convert PIL Image to numpy array
    img_array = np.array(image.convert('RGB'))
    
    # Store original image for display
    original_img = img_array.copy()
    
    # Resize to target size
    img_resized = tf.image.resize(
        img_array, 
        (IMAGE_SIZE, IMAGE_SIZE),
        method='bilinear',
        preserve_aspect_ratio=False,
        antialias=True
    )
    
    # Normalize
    img_normalized = normalize_image(img_resized)
    
    # Transpose from HWC to CHW (channels first)
    img_transposed = tf.transpose(img_normalized, (2, 0, 1))
    
    # Add batch dimension
    img_batch = tf.expand_dims(img_transposed, axis=0)
    
    return img_batch, original_img


def process_uploaded_mask(mask_array):
    """
    Process an uploaded mask from save_image_and_mask_to_local function
    
    Args:
        mask_array: Numpy array of the mask
        
    Returns:
        Processed mask with values 0,1,2
    """
    # Handle RGBA images
    if len(mask_array.shape) == 3 and mask_array.shape[2] == 4:
        mask_array = mask_array[:,:,:3]
    
    # Convert RGB to grayscale if needed
    if len(mask_array.shape) == 3 and mask_array.shape[2] >= 3:
        mask_array = cv2.cvtColor(mask_array, cv2.COLOR_RGB2GRAY)
    
    # Check the unique values in the mask to determine processing
    unique_values = np.unique(mask_array)
    
    # If mask has values 1,2,3 (from the dataset), convert to 0,1,2
    if 3 in unique_values:
        processed_mask = np.zeros_like(mask_array)
        processed_mask[mask_array == 1] = 2  # Foreground/pet (1β†’2)
        processed_mask[mask_array == 2] = 1  # Border (2β†’1)
        processed_mask[mask_array == 3] = 0  # Background (3β†’0)
        return processed_mask
    
    # If mask has values 0,1,2 already, just return it
    elif 0 in unique_values and 2 in unique_values:
        return mask_array
    
    # If we can't determine the format, use binary threshold as fallback
    else:
        # Use binary threshold to create a simple foreground/background mask
        _, binary_mask = cv2.threshold(mask_array, 127, 2, cv2.THRESH_BINARY)
        return binary_mask


def create_mask(pred_mask):
    """Convert model prediction to mask"""
    pred_mask = tf.math.argmax(pred_mask, axis=1)
    pred_mask = tf.squeeze(pred_mask)
    return pred_mask.numpy()


def colorize_mask(mask):
    """Colorize a segmentation mask for visualization"""
    # Define colors for visualization
    colors = [
        [0, 0, 0],       # Black for background (0)
        [255, 255, 0],   # Yellow for border (1)
        [255, 0, 0]      # Red for foreground/pet (2)
    ]
    
    # Create RGB mask
    height, width = mask.shape
    colorized = np.zeros((height, width, 3), dtype=np.uint8)
    
    # Apply colors
    for i, color in enumerate(colors):
        colorized[mask == i] = color
    
    return colorized


def create_overlay(image, mask, alpha=0.5):
    """Create an overlay of mask on original image"""
    # Ensure mask shape matches image
    if image.shape[:2] != mask.shape[:2]:
        mask = cv2.resize(mask, (image.shape[1], image.shape[0]))
    
    # Create blend
    overlay = cv2.addWeighted(
        image, 
        1, 
        mask.astype(np.uint8), 
        alpha, 
        0
    )
    
    return overlay


def calculate_iou(y_true, y_pred, class_idx=None):
    """Calculate IoU (Intersection over Union)"""
    if class_idx is not None:
        # Convert to binary masks for specific class
        y_true_class = (y_true == class_idx).astype(np.float32)
        y_pred_class = (y_pred == class_idx).astype(np.float32)
        
        # Calculate intersection and union
        intersection = np.sum(y_true_class * y_pred_class)
        union = np.sum(y_true_class) + np.sum(y_pred_class) - intersection
        
        # Return IoU score
        return float(intersection) / float(union) if union > 0 else 0.0
    else:
        # Calculate mean IoU across all classes
        class_ious = []
        for idx in range(NUM_CLASSES):
            class_iou = calculate_iou(y_true, y_pred, idx)
            class_ious.append(class_iou)
        
        return np.mean(class_ious)


def calculate_dice(y_true, y_pred, class_idx=None):
    """Calculate Dice coefficient (F1 score)"""
    if class_idx is not None:
        # Convert to binary masks for specific class
        y_true_class = (y_true == class_idx).astype(np.float32)
        y_pred_class = (y_pred == class_idx).astype(np.float32)
        
        # Calculate intersection and sum of areas
        intersection = 2.0 * np.sum(y_true_class * y_pred_class)
        sum_areas = np.sum(y_true_class) + np.sum(y_pred_class)
        
        # Return Dice score
        return float(intersection) / float(sum_areas) if sum_areas > 0 else 0.0
    else:
        # Calculate mean Dice across all classes
        class_dices = []
        for idx in range(NUM_CLASSES):
            class_dice = calculate_dice(y_true, y_pred, idx)
            class_dices.append(class_dice)
        
        return np.mean(class_dices)


def calculate_pixel_accuracy(y_true, y_pred):
    """Calculate pixel accuracy"""
    correct = np.sum(y_true == y_pred)
    total = y_true.size
    return float(correct) / float(total)


def display_side_by_side(original_img, gt_mask=None, pred_mask=None, overlay=None):
    """Display images side by side"""
    # Determine number of columns based on available images
    columns = 1  # Start with original image
    if gt_mask is not None:
        columns += 1
    if pred_mask is not None:
        columns += 1
    if overlay is not None:
        columns += 1
    
    cols = st.columns(columns)
    
    # Display original image
    with cols[0]:
        st.markdown("### Original Image")
        st.image(original_img, use_column_width=True)
    
    # Display ground truth mask if available
    col_idx = 1
    if gt_mask is not None:
        with cols[col_idx]:
            st.markdown("### Ground Truth Mask")
            st.image(gt_mask, use_column_width=True)
        col_idx += 1
    
    # Display predicted mask if available
    if pred_mask is not None:
        with cols[col_idx]:
            st.markdown("### Predicted Mask")
            st.image(pred_mask, use_column_width=True)
        col_idx += 1
    
    # Display overlay if available
    if overlay is not None:
        with cols[col_idx]:
            st.markdown("### Overlay")
            st.image(overlay, use_column_width=True)


def main():
    st.title("🐢 Pet Segmentation with SegFormer")
    st.markdown("""
        This app demonstrates semantic segmentation of pet images using a SegFormer model.
        The model segments images into three classes:
        - **Background**: Areas around the pet
        - **Border**: The boundary/outline around the pet
        - **Foreground**: The pet itself
    """)
    
    # Sidebar settings
    st.sidebar.title("Settings")
    
    # Debug mode toggle
    debug_mode = st.sidebar.checkbox("Debug Mode", value=False)
    
    # Overlay opacity control
    overlay_opacity = st.sidebar.slider(
        "Overlay Opacity", 
        min_value=0.1, 
        max_value=1.0, 
        value=0.5, 
        step=0.1
    )
    
    # Load model
    with st.spinner("Loading SegFormer model..."):
        model = load_model()
        
    if model is None:
        st.error("Failed to load model. Please check your model path and try again.")
        return
    else:
        st.sidebar.success("Model loaded successfully!")
    
    # Image upload section
    st.header("Upload an Image")
    uploaded_image = st.file_uploader("Upload a pet image:", type=["jpg", "jpeg", "png"])
    uploaded_mask = st.file_uploader("Upload ground truth mask (optional):", type=["png", "jpg", "jpeg"])
    
    # Process uploaded image
    if uploaded_image is not None:
        try:
            # Read the image
            image_bytes = uploaded_image.read()
            image = Image.open(io.BytesIO(image_bytes))
            
            # Display the original image first
            st.subheader("Original Image")
            st.image(image, caption="Uploaded Image", use_column_width=True)
                
            # Preprocess and predict
            with st.spinner("Generating segmentation mask..."):
                # Preprocess the image
                img_tensor, original_img = preprocess_image(image)
                
                # Make prediction
                outputs = model(pixel_values=img_tensor, training=False)
                logits = outputs.logits
                
                # Create mask
                mask = create_mask(logits)
                
                # Colorize the mask
                colorized_mask = colorize_mask(mask)
                
                # Create overlay
                overlay = create_overlay(original_img, colorized_mask, alpha=overlay_opacity)
            
            # Prepare for metrics calculation
            gt_mask = None
            gt_mask_colorized = None
            metrics_calculated = False
            
            # Calculate metrics if ground truth is uploaded
            if uploaded_mask is not None:
                try:
                    # Reset the file pointer to the beginning
                    uploaded_mask.seek(0)
                    
                    # Read the mask file
                    mask_data = uploaded_mask.read()
                    mask_io = io.BytesIO(mask_data)
                    gt_mask_raw = np.array(Image.open(mask_io))
                    
                    if debug_mode:
                        st.write(f"Ground truth mask shape: {gt_mask_raw.shape}")
                        st.write(f"Ground truth mask unique values: {np.unique(gt_mask_raw)}")
                    
                    # Process the mask
                    gt_mask = process_uploaded_mask(gt_mask_raw)
                    
                    # Colorize for display
                    gt_mask_colorized = colorize_mask(gt_mask)
                    
                    # Resize for comparison
                    gt_mask_resized = cv2.resize(gt_mask, (mask.shape[0], mask.shape[1]), 
                                               interpolation=cv2.INTER_NEAREST)
                    
                    if debug_mode:
                        st.write(f"Processed GT mask shape: {gt_mask_resized.shape}")
                        st.write(f"Processed GT unique values: {np.unique(gt_mask_resized)}")
                        st.write(f"Prediction mask unique values: {np.unique(mask)}")
                    
                    # Calculate metrics
                    iou_score = calculate_iou(gt_mask_resized, mask)
                    dice_score = calculate_dice(gt_mask_resized, mask)
                    accuracy = calculate_pixel_accuracy(gt_mask_resized, mask)
                    
                    metrics_calculated = True
                except Exception as e:
                    st.error(f"Error processing ground truth mask: {e}")
                    if debug_mode:
                        import traceback
                        st.code(traceback.format_exc())
            
            # Display results
            st.subheader("Segmentation Results")
            display_side_by_side(
                original_img,
                gt_mask_colorized,
                colorized_mask,
                overlay
            )
            
            # Display metrics if calculated
            if metrics_calculated:
                st.header("Segmentation Metrics")
                
                # Display overall metrics
                col1, col2, col3 = st.columns(3)
                with col1:
                    st.metric("Mean IoU", f"{iou_score:.4f}")
                with col2:
                    st.metric("Mean Dice", f"{dice_score:.4f}")
                with col3:
                    st.metric("Pixel Accuracy", f"{accuracy:.4f}")
                
                # Display class-specific metrics
                st.subheader("Metrics by Class")
                cols = st.columns(NUM_CLASSES)
                class_names = ["Background", "Border", "Foreground/Pet"]
                
                for i, (col, name) in enumerate(zip(cols, class_names)):
                    with col:
                        st.markdown(f"**{name}**")
                        class_iou = calculate_iou(gt_mask_resized, mask, i)
                        class_dice = calculate_dice(gt_mask_resized, mask, i)
                        st.metric("IoU", f"{class_iou:.4f}")
                        st.metric("Dice", f"{class_dice:.4f}")
            
            # Display segmentation details
            st.header("Segmentation Details")
            col1, col2, col3 = st.columns(3)
            
            with col1:
                st.subheader("Background")
                st.markdown("Areas surrounding the pet")
                mask_bg = np.where(mask == 0, 255, 0).astype(np.uint8)
                st.image(mask_bg, caption="Background", use_column_width=True)
                
            with col2:
                st.subheader("Border")
                st.markdown("Boundary around the pet")
                mask_border = np.where(mask == 1, 255, 0).astype(np.uint8)
                st.image(mask_border, caption="Border", use_column_width=True)
                
            with col3:
                st.subheader("Foreground (Pet)")
                st.markdown("The pet itself")
                mask_fg = np.where(mask == 2, 255, 0).astype(np.uint8)
                st.image(mask_fg, caption="Foreground", use_column_width=True)
            
            # Download buttons
            st.header("Download Results")
            col1, col2, col3 = st.columns(3)
            
            with col1:
                # Download prediction as PNG
                pred_pil = Image.fromarray(colorized_mask)
                pred_bytes = io.BytesIO()
                pred_pil.save(pred_bytes, format='PNG')
                pred_bytes = pred_bytes.getvalue()
                
                st.download_button(
                    label="Download Prediction",
                    data=pred_bytes,
                    file_name="prediction.png",
                    mime="image/png"
                )
            
            with col2:
                # Download overlay as PNG
                overlay_pil = Image.fromarray(overlay)
                overlay_bytes = io.BytesIO()
                overlay_pil.save(overlay_bytes, format='PNG')
                overlay_bytes = overlay_bytes.getvalue()
                
                st.download_button(
                    label="Download Overlay",
                    data=overlay_bytes,
                    file_name="overlay.png",
                    mime="image/png"
                )
            
            if metrics_calculated:
                with col3:
                    # Create CSV with metrics
                    metrics_csv = f"Metric,Overall,Background,Border,Foreground\n"
                    metrics_csv += f"IoU,{iou_score:.4f},{calculate_iou(gt_mask_resized, mask, 0):.4f},{calculate_iou(gt_mask_resized, mask, 1):.4f},{calculate_iou(gt_mask_resized, mask, 2):.4f}\n"
                    metrics_csv += f"Dice,{dice_score:.4f},{calculate_dice(gt_mask_resized, mask, 0):.4f},{calculate_dice(gt_mask_resized, mask, 1):.4f},{calculate_dice(gt_mask_resized, mask, 2):.4f}\n"
                    metrics_csv += f"Accuracy,{accuracy:.4f},,,"
                    
                    st.download_button(
                        label="Download Metrics",
                        data=metrics_csv,
                        file_name="metrics.csv",
                        mime="text/csv"
                    )
            
        except Exception as e:
            st.error(f"Error processing image: {e}")
            if debug_mode:
                import traceback
                st.code(traceback.format_exc())
    else:
        # Display sample images if no image is uploaded
        st.info("Please upload an image to get started.")


if __name__ == "__main__":
    # Try to configure GPU memory growth
    try:
        gpus = tf.config.experimental.list_physical_devices('GPU')
        if gpus:
            for gpu in gpus:
                tf.config.experimental.set_memory_growth(gpu, True)
    except Exception as e:
        print(f"GPU configuration error: {e}")
    
    main()