Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -10,6 +10,7 @@ import io
|
|
10 |
import gdown
|
11 |
from transformers import TFSegformerForSemanticSegmentation
|
12 |
|
|
|
13 |
st.set_page_config(
|
14 |
page_title="Pet Segmentation with SegFormer",
|
15 |
page_icon="🐶",
|
@@ -17,25 +18,26 @@ st.set_page_config(
|
|
17 |
initial_sidebar_state="expanded"
|
18 |
)
|
19 |
|
20 |
-
# Constants for image preprocessing
|
21 |
IMAGE_SIZE = 512
|
22 |
OUTPUT_SIZE = 128
|
23 |
MEAN = tf.constant([0.485, 0.456, 0.406])
|
24 |
STD = tf.constant([0.229, 0.224, 0.225])
|
25 |
|
26 |
-
# Class labels
|
27 |
ID2LABEL = {0: "background", 1: "border", 2: "foreground/pet"}
|
28 |
NUM_CLASSES = len(ID2LABEL)
|
29 |
|
30 |
|
31 |
@st.cache_resource
|
32 |
def download_model_from_drive():
|
|
|
33 |
# Create a models directory
|
34 |
os.makedirs("models", exist_ok=True)
|
35 |
-
model_path = "models/
|
36 |
|
37 |
if not os.path.exists(model_path):
|
38 |
-
#
|
39 |
url = "https://drive.google.com/file/d/1XObpqG8qZ7YUyiRKbpVvxX11yQSK8Y_3/view?usp=sharing"
|
40 |
try:
|
41 |
gdown.download(url, model_path, quiet=False)
|
@@ -50,12 +52,7 @@ def download_model_from_drive():
|
|
50 |
|
51 |
@st.cache_resource
|
52 |
def load_model():
|
53 |
-
"""
|
54 |
-
Load the SegFormer model
|
55 |
-
|
56 |
-
Returns:
|
57 |
-
Loaded model
|
58 |
-
"""
|
59 |
try:
|
60 |
# First create a base model with the correct architecture
|
61 |
base_model = TFSegformerForSemanticSegmentation.from_pretrained(
|
@@ -68,54 +65,35 @@ def load_model():
|
|
68 |
|
69 |
# Download the trained weights
|
70 |
model_path = download_model_from_drive()
|
71 |
-
|
72 |
-
if model_path is not None and os.path.exists(model_path):
|
73 |
-
st.info(f"Loading weights from {model_path}...")
|
74 |
try:
|
75 |
-
# Try to load the weights
|
76 |
base_model.load_weights(model_path)
|
77 |
st.success("Model weights loaded successfully!")
|
78 |
-
return base_model
|
79 |
except Exception as e:
|
80 |
# st.error(f"Error loading weights: {e}")
|
81 |
-
# st.
|
82 |
-
|
83 |
-
|
84 |
-
st.warning("Using base pretrained model since download failed")
|
85 |
-
return base_model
|
86 |
|
87 |
except Exception as e:
|
88 |
st.error(f"Error in load_model: {e}")
|
89 |
-
|
90 |
-
|
91 |
-
return TFSegformerForSemanticSegmentation.from_pretrained(
|
92 |
-
"nvidia/mit-b0",
|
93 |
-
num_labels=NUM_CLASSES,
|
94 |
-
id2label=ID2LABEL,
|
95 |
-
label2id={label: id for id, label in ID2LABEL.items()},
|
96 |
-
ignore_mismatched_sizes=True
|
97 |
-
)
|
98 |
|
99 |
def normalize_image(input_image):
|
100 |
-
"""
|
101 |
-
Normalize the input image
|
102 |
-
|
103 |
-
Args:
|
104 |
-
input_image: Image to normalize
|
105 |
-
|
106 |
-
Returns:
|
107 |
-
Normalized image
|
108 |
-
"""
|
109 |
input_image = tf.image.convert_image_dtype(input_image, tf.float32)
|
110 |
input_image = (input_image - MEAN) / tf.maximum(STD, backend.epsilon())
|
111 |
return input_image
|
112 |
|
113 |
-
|
|
|
114 |
"""
|
115 |
-
Preprocess image
|
116 |
|
117 |
Args:
|
118 |
image: PIL Image to preprocess
|
|
|
119 |
|
120 |
Returns:
|
121 |
Preprocessed image tensor, original image
|
@@ -126,8 +104,14 @@ def preprocess_image(image):
|
|
126 |
# Store original image for display
|
127 |
original_img = img_array.copy()
|
128 |
|
129 |
-
# Resize to target size
|
130 |
-
img_resized = tf.image.resize(
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
|
132 |
# Normalize
|
133 |
img_normalized = normalize_image(img_resized)
|
@@ -140,6 +124,41 @@ def preprocess_image(image):
|
|
140 |
|
141 |
return img_batch, original_img
|
142 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
def create_mask(pred_mask):
|
144 |
"""
|
145 |
Convert model prediction to displayable mask
|
@@ -150,64 +169,96 @@ def create_mask(pred_mask):
|
|
150 |
Returns:
|
151 |
Processed mask (2D array)
|
152 |
"""
|
|
|
153 |
pred_mask = tf.math.argmax(pred_mask, axis=1)
|
|
|
|
|
154 |
pred_mask = tf.squeeze(pred_mask)
|
|
|
155 |
return pred_mask.numpy()
|
156 |
|
|
|
157 |
def colorize_mask(mask):
|
158 |
"""
|
159 |
-
|
160 |
|
161 |
Args:
|
162 |
-
mask: Segmentation mask (2D array)
|
163 |
|
164 |
Returns:
|
165 |
-
Colorized mask (3D RGB
|
166 |
"""
|
167 |
-
#
|
168 |
-
if len(mask.shape) > 2:
|
169 |
-
mask = np.squeeze(mask)
|
170 |
-
|
171 |
-
# Define colors for each class (RGB)
|
172 |
colors = [
|
173 |
-
[0, 0, 0],
|
174 |
-
[255,
|
175 |
-
[
|
176 |
]
|
177 |
|
178 |
# Create RGB mask
|
179 |
-
|
|
|
180 |
|
|
|
181 |
for i, color in enumerate(colors):
|
182 |
-
|
183 |
-
for c in range(3):
|
184 |
-
rgb_mask[:, :, c] += class_mask * color[c]
|
185 |
|
186 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
187 |
|
188 |
def calculate_iou(y_true, y_pred, class_idx=None):
|
189 |
"""
|
190 |
-
Calculate IoU (Intersection over Union)
|
191 |
|
192 |
Args:
|
193 |
-
y_true: Ground truth
|
194 |
-
y_pred: Predicted
|
195 |
-
class_idx:
|
196 |
|
197 |
Returns:
|
198 |
IoU score
|
199 |
"""
|
200 |
if class_idx is not None:
|
201 |
-
#
|
202 |
y_true_class = (y_true == class_idx).astype(np.float32)
|
203 |
y_pred_class = (y_pred == class_idx).astype(np.float32)
|
204 |
|
|
|
205 |
intersection = np.sum(y_true_class * y_pred_class)
|
206 |
union = np.sum(y_true_class) + np.sum(y_pred_class) - intersection
|
207 |
|
208 |
-
|
|
|
209 |
else:
|
210 |
-
#
|
211 |
class_ious = []
|
212 |
for idx in range(NUM_CLASSES):
|
213 |
class_iou = calculate_iou(y_true, y_pred, idx)
|
@@ -217,32 +268,105 @@ def calculate_iou(y_true, y_pred, class_idx=None):
|
|
217 |
|
218 |
return iou
|
219 |
|
220 |
-
|
|
|
221 |
"""
|
222 |
-
|
223 |
|
224 |
Args:
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
|
229 |
Returns:
|
230 |
-
|
231 |
"""
|
232 |
-
|
233 |
-
|
234 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
235 |
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
0
|
243 |
-
)
|
244 |
|
245 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
246 |
|
247 |
def main():
|
248 |
st.title("🐶 Pet Segmentation with SegFormer")
|
@@ -254,23 +378,16 @@ def main():
|
|
254 |
- **Foreground**: The pet itself
|
255 |
""")
|
256 |
|
257 |
-
# Sidebar
|
258 |
-
st.sidebar.
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
Key features:
|
263 |
-
- Hierarchical transformer encoder
|
264 |
-
- Lightweight MLP decoder
|
265 |
-
- Efficient mix of local and global attention
|
266 |
-
|
267 |
-
This implementation uses the MIT-B0 variant fine-tuned on the Oxford-IIIT Pet dataset.
|
268 |
-
""")
|
269 |
|
270 |
-
#
|
271 |
-
st.sidebar.
|
272 |
|
273 |
-
# Overlay opacity
|
274 |
overlay_opacity = st.sidebar.slider(
|
275 |
"Overlay Opacity",
|
276 |
min_value=0.1,
|
@@ -284,7 +401,8 @@ def main():
|
|
284 |
model = load_model()
|
285 |
|
286 |
if model is None:
|
287 |
-
st.error("Failed to load model.
|
|
|
288 |
else:
|
289 |
st.sidebar.success("Model loaded successfully!")
|
290 |
|
@@ -300,22 +418,16 @@ def main():
|
|
300 |
image_bytes = uploaded_image.read()
|
301 |
image = Image.open(io.BytesIO(image_bytes))
|
302 |
|
303 |
-
col1, col2 = st.columns(2)
|
304 |
-
|
305 |
-
with col1:
|
306 |
-
st.subheader("Original Image")
|
307 |
-
st.image(image, caption="Uploaded Image", use_column_width=True)
|
308 |
-
|
309 |
# Preprocess and predict
|
310 |
with st.spinner("Generating segmentation mask..."):
|
311 |
# Preprocess the image
|
312 |
-
img_tensor, original_img = preprocess_image(image)
|
313 |
|
314 |
# Make prediction
|
315 |
outputs = model(pixel_values=img_tensor, training=False)
|
316 |
logits = outputs.logits
|
317 |
|
318 |
-
# Create
|
319 |
mask = create_mask(logits)
|
320 |
|
321 |
# Colorize the mask
|
@@ -324,10 +436,86 @@ def main():
|
|
324 |
# Create overlay
|
325 |
overlay = create_overlay(original_img, colorized_mask, alpha=overlay_opacity)
|
326 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
327 |
# Display results
|
328 |
-
|
329 |
-
|
330 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
331 |
|
332 |
# Display segmentation details
|
333 |
st.header("Segmentation Details")
|
@@ -351,86 +539,68 @@ def main():
|
|
351 |
mask_fg = np.where(mask == 2, 255, 0).astype(np.uint8)
|
352 |
st.image(mask_fg, caption="Foreground", use_column_width=True)
|
353 |
|
354 |
-
# Calculate IoU if ground truth is uploaded
|
355 |
-
if uploaded_mask is not None:
|
356 |
-
try:
|
357 |
-
# Read the mask file
|
358 |
-
mask_data = uploaded_mask.read()
|
359 |
-
mask_io = io.BytesIO(mask_data)
|
360 |
-
gt_mask = np.array(Image.open(mask_io).resize((OUTPUT_SIZE, OUTPUT_SIZE), Image.NEAREST))
|
361 |
-
|
362 |
-
# Handle different mask formats
|
363 |
-
if len(gt_mask.shape) == 3 and gt_mask.shape[2] == 3:
|
364 |
-
# Convert RGB to single channel if needed
|
365 |
-
gt_mask = cv2.cvtColor(gt_mask, cv2.COLOR_RGB2GRAY)
|
366 |
-
|
367 |
-
# Calculate and display IoU
|
368 |
-
resized_mask = cv2.resize(mask, (OUTPUT_SIZE, OUTPUT_SIZE), interpolation=cv2.INTER_NEAREST)
|
369 |
-
iou_score = calculate_iou(gt_mask, resized_mask)
|
370 |
-
st.success(f"Mean IoU: {iou_score:.4f}")
|
371 |
-
|
372 |
-
# Display specific class IoUs
|
373 |
-
st.markdown("### IoU by Class")
|
374 |
-
col1, col2, col3 = st.columns(3)
|
375 |
-
with col1:
|
376 |
-
bg_iou = calculate_iou(gt_mask, resized_mask, 0)
|
377 |
-
st.metric("Background IoU", f"{bg_iou:.4f}")
|
378 |
-
with col2:
|
379 |
-
border_iou = calculate_iou(gt_mask, resized_mask, 1)
|
380 |
-
st.metric("Border IoU", f"{border_iou:.4f}")
|
381 |
-
with col3:
|
382 |
-
fg_iou = calculate_iou(gt_mask, resized_mask, 2)
|
383 |
-
st.metric("Foreground IoU", f"{fg_iou:.4f}")
|
384 |
-
except Exception as e:
|
385 |
-
st.error(f"Error processing ground truth mask: {e}")
|
386 |
-
st.write("Please ensure the mask is valid and has the correct format.")
|
387 |
-
|
388 |
# Download buttons
|
389 |
-
|
|
|
390 |
|
391 |
with col1:
|
392 |
-
#
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
|
398 |
st.download_button(
|
399 |
-
label="Download
|
400 |
-
data=
|
401 |
-
file_name="
|
402 |
mime="image/png"
|
403 |
)
|
404 |
|
405 |
with col2:
|
406 |
-
#
|
407 |
-
|
408 |
overlay_bytes = io.BytesIO()
|
409 |
-
|
410 |
overlay_bytes = overlay_bytes.getvalue()
|
411 |
|
412 |
st.download_button(
|
413 |
-
label="Download Overlay
|
414 |
data=overlay_bytes,
|
415 |
-
file_name="
|
416 |
mime="image/png"
|
417 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
418 |
except Exception as e:
|
419 |
st.error(f"Error processing image: {e}")
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
st.markdown("""
|
425 |
-
This segmentation model is based on the SegFormer architecture and was fine-tuned on the Oxford-IIIT Pet dataset.
|
426 |
-
|
427 |
-
**Key Performance Metrics:**
|
428 |
-
- Mean IoU (Intersection over Union): Measures overlap between predictions and ground truth
|
429 |
-
- Dice Coefficient: Similar to F1-score, balances precision and recall
|
430 |
-
|
431 |
-
The model segments pet images into three semantic classes (background, border, and pet/foreground),
|
432 |
-
making it useful for applications like pet image editing, background removal, and object detection.
|
433 |
-
""")
|
434 |
|
435 |
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
436 |
main()
|
|
|
10 |
import gdown
|
11 |
from transformers import TFSegformerForSemanticSegmentation
|
12 |
|
13 |
+
# Set page config at the very beginning of the app
|
14 |
st.set_page_config(
|
15 |
page_title="Pet Segmentation with SegFormer",
|
16 |
page_icon="🐶",
|
|
|
18 |
initial_sidebar_state="expanded"
|
19 |
)
|
20 |
|
21 |
+
# Constants for image preprocessing - matching colab_code.py
|
22 |
IMAGE_SIZE = 512
|
23 |
OUTPUT_SIZE = 128
|
24 |
MEAN = tf.constant([0.485, 0.456, 0.406])
|
25 |
STD = tf.constant([0.229, 0.224, 0.225])
|
26 |
|
27 |
+
# Class labels - DO NOT CHANGE
|
28 |
ID2LABEL = {0: "background", 1: "border", 2: "foreground/pet"}
|
29 |
NUM_CLASSES = len(ID2LABEL)
|
30 |
|
31 |
|
32 |
@st.cache_resource
|
33 |
def download_model_from_drive():
|
34 |
+
"""Download the model from Google Drive"""
|
35 |
# Create a models directory
|
36 |
os.makedirs("models", exist_ok=True)
|
37 |
+
model_path = "models/tf_model.h5"
|
38 |
|
39 |
if not os.path.exists(model_path):
|
40 |
+
# Correct format for gdown
|
41 |
url = "https://drive.google.com/file/d/1XObpqG8qZ7YUyiRKbpVvxX11yQSK8Y_3/view?usp=sharing"
|
42 |
try:
|
43 |
gdown.download(url, model_path, quiet=False)
|
|
|
52 |
|
53 |
@st.cache_resource
|
54 |
def load_model():
|
55 |
+
"""Load the SegFormer model"""
|
|
|
|
|
|
|
|
|
|
|
56 |
try:
|
57 |
# First create a base model with the correct architecture
|
58 |
base_model = TFSegformerForSemanticSegmentation.from_pretrained(
|
|
|
65 |
|
66 |
# Download the trained weights
|
67 |
model_path = download_model_from_drive()
|
68 |
+
if model_path:
|
|
|
|
|
69 |
try:
|
|
|
70 |
base_model.load_weights(model_path)
|
71 |
st.success("Model weights loaded successfully!")
|
|
|
72 |
except Exception as e:
|
73 |
# st.error(f"Error loading weights: {e}")
|
74 |
+
# st.warning("Using base pretrained model instead.")
|
75 |
+
|
76 |
+
return base_model
|
|
|
|
|
77 |
|
78 |
except Exception as e:
|
79 |
st.error(f"Error in load_model: {e}")
|
80 |
+
return None
|
81 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
def normalize_image(input_image):
|
84 |
+
"""Normalize image with ImageNet stats"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
input_image = tf.image.convert_image_dtype(input_image, tf.float32)
|
86 |
input_image = (input_image - MEAN) / tf.maximum(STD, backend.epsilon())
|
87 |
return input_image
|
88 |
|
89 |
+
|
90 |
+
def preprocess_image(image, is_dataset_image=False):
|
91 |
"""
|
92 |
+
Preprocess image exactly like in colab_code.py
|
93 |
|
94 |
Args:
|
95 |
image: PIL Image to preprocess
|
96 |
+
is_dataset_image: Whether the image is from the Oxford-IIIT Pet dataset
|
97 |
|
98 |
Returns:
|
99 |
Preprocessed image tensor, original image
|
|
|
104 |
# Store original image for display
|
105 |
original_img = img_array.copy()
|
106 |
|
107 |
+
# Resize to target size with preserve_aspect_ratio=False
|
108 |
+
img_resized = tf.image.resize(
|
109 |
+
img_array,
|
110 |
+
(IMAGE_SIZE, IMAGE_SIZE),
|
111 |
+
method='bilinear',
|
112 |
+
preserve_aspect_ratio=False, # Ensure exact dimensions
|
113 |
+
antialias=True
|
114 |
+
)
|
115 |
|
116 |
# Normalize
|
117 |
img_normalized = normalize_image(img_resized)
|
|
|
124 |
|
125 |
return img_batch, original_img
|
126 |
|
127 |
+
|
128 |
+
def process_uploaded_mask(mask_array, from_dataset=True):
|
129 |
+
"""
|
130 |
+
Process an uploaded mask from the dataset to match app's format
|
131 |
+
|
132 |
+
Args:
|
133 |
+
mask_array: Numpy array of the mask
|
134 |
+
from_dataset: Whether the mask is from the original dataset
|
135 |
+
|
136 |
+
Returns:
|
137 |
+
Processed mask with values 0,1,2
|
138 |
+
"""
|
139 |
+
# Handle RGBA images
|
140 |
+
if len(mask_array.shape) == 3 and mask_array.shape[2] == 4:
|
141 |
+
mask_array = mask_array[:,:,:3]
|
142 |
+
|
143 |
+
# Convert RGB to grayscale if needed
|
144 |
+
if len(mask_array.shape) == 3 and mask_array.shape[2] >= 3:
|
145 |
+
mask_array = cv2.cvtColor(mask_array, cv2.COLOR_RGB2GRAY)
|
146 |
+
|
147 |
+
# For dataset masks, convert from original values (1,2,3) to app values (0,1,2)
|
148 |
+
if from_dataset:
|
149 |
+
processed_mask = np.zeros_like(mask_array)
|
150 |
+
|
151 |
+
# Map dataset values to app values
|
152 |
+
processed_mask[mask_array == 1] = 2 # Foreground/pet (1→2)
|
153 |
+
processed_mask[mask_array == 2] = 1 # Border (2→1)
|
154 |
+
processed_mask[mask_array == 3] = 0 # Background (3→0)
|
155 |
+
|
156 |
+
return processed_mask
|
157 |
+
else:
|
158 |
+
# For non-dataset masks, assume they're already in the right format
|
159 |
+
return mask_array
|
160 |
+
|
161 |
+
|
162 |
def create_mask(pred_mask):
|
163 |
"""
|
164 |
Convert model prediction to displayable mask
|
|
|
169 |
Returns:
|
170 |
Processed mask (2D array)
|
171 |
"""
|
172 |
+
# Take argmax along the class dimension
|
173 |
pred_mask = tf.math.argmax(pred_mask, axis=1)
|
174 |
+
|
175 |
+
# Remove batch dimension and convert to numpy
|
176 |
pred_mask = tf.squeeze(pred_mask)
|
177 |
+
|
178 |
return pred_mask.numpy()
|
179 |
|
180 |
+
|
181 |
def colorize_mask(mask):
|
182 |
"""
|
183 |
+
Colorize a segmentation mask for visualization
|
184 |
|
185 |
Args:
|
186 |
+
mask: Segmentation mask (2D array with class indices)
|
187 |
|
188 |
Returns:
|
189 |
+
Colorized mask (3D array with RGB colors)
|
190 |
"""
|
191 |
+
# Define colors for visualization
|
|
|
|
|
|
|
|
|
192 |
colors = [
|
193 |
+
[0, 0, 0], # Black for background (0)
|
194 |
+
[255, 255, 0], # Yellow for border (1)
|
195 |
+
[255, 0, 0] # Red for foreground/pet (2)
|
196 |
]
|
197 |
|
198 |
# Create RGB mask
|
199 |
+
height, width = mask.shape
|
200 |
+
colorized = np.zeros((height, width, 3), dtype=np.uint8)
|
201 |
|
202 |
+
# Apply colors
|
203 |
for i, color in enumerate(colors):
|
204 |
+
colorized[mask == i] = color
|
|
|
|
|
205 |
|
206 |
+
return colorized
|
207 |
+
|
208 |
+
|
209 |
+
def create_overlay(image, mask, alpha=0.5):
|
210 |
+
"""
|
211 |
+
Create an overlay of mask on original image
|
212 |
+
|
213 |
+
Args:
|
214 |
+
image: Original image
|
215 |
+
mask: Colorized segmentation mask
|
216 |
+
alpha: Transparency level (0-1)
|
217 |
+
|
218 |
+
Returns:
|
219 |
+
Overlay image
|
220 |
+
"""
|
221 |
+
# Ensure mask shape matches image
|
222 |
+
if image.shape[:2] != mask.shape[:2]:
|
223 |
+
mask = cv2.resize(mask, (image.shape[1], image.shape[0]))
|
224 |
+
|
225 |
+
# Create blend
|
226 |
+
overlay = cv2.addWeighted(
|
227 |
+
image,
|
228 |
+
1,
|
229 |
+
mask.astype(np.uint8),
|
230 |
+
alpha,
|
231 |
+
0
|
232 |
+
)
|
233 |
+
|
234 |
+
return overlay
|
235 |
+
|
236 |
|
237 |
def calculate_iou(y_true, y_pred, class_idx=None):
|
238 |
"""
|
239 |
+
Calculate IoU (Intersection over Union)
|
240 |
|
241 |
Args:
|
242 |
+
y_true: Ground truth mask
|
243 |
+
y_pred: Predicted mask
|
244 |
+
class_idx: Class index to compute IoU for (if None, compute mean IoU)
|
245 |
|
246 |
Returns:
|
247 |
IoU score
|
248 |
"""
|
249 |
if class_idx is not None:
|
250 |
+
# Convert to binary masks for specific class
|
251 |
y_true_class = (y_true == class_idx).astype(np.float32)
|
252 |
y_pred_class = (y_pred == class_idx).astype(np.float32)
|
253 |
|
254 |
+
# Calculate intersection and union
|
255 |
intersection = np.sum(y_true_class * y_pred_class)
|
256 |
union = np.sum(y_true_class) + np.sum(y_pred_class) - intersection
|
257 |
|
258 |
+
# Return IoU score
|
259 |
+
return float(intersection) / float(union) if union > 0 else 0.0
|
260 |
else:
|
261 |
+
# Calculate mean IoU across all classes
|
262 |
class_ious = []
|
263 |
for idx in range(NUM_CLASSES):
|
264 |
class_iou = calculate_iou(y_true, y_pred, idx)
|
|
|
268 |
|
269 |
return iou
|
270 |
|
271 |
+
|
272 |
+
def calculate_dice(y_true, y_pred, class_idx=None):
|
273 |
"""
|
274 |
+
Calculate Dice coefficient (F1 score)
|
275 |
|
276 |
Args:
|
277 |
+
y_true: Ground truth mask
|
278 |
+
y_pred: Predicted mask
|
279 |
+
class_idx: Class index to compute Dice for (if None, compute mean Dice)
|
280 |
|
281 |
Returns:
|
282 |
+
Dice score
|
283 |
"""
|
284 |
+
if class_idx is not None:
|
285 |
+
# Convert to binary masks for specific class
|
286 |
+
y_true_class = (y_true == class_idx).astype(np.float32)
|
287 |
+
y_pred_class = (y_pred == class_idx).astype(np.float32)
|
288 |
+
|
289 |
+
# Calculate intersection and sum of areas
|
290 |
+
intersection = 2.0 * np.sum(y_true_class * y_pred_class)
|
291 |
+
sum_areas = np.sum(y_true_class) + np.sum(y_pred_class)
|
292 |
+
|
293 |
+
# Return Dice score
|
294 |
+
return float(intersection) / float(sum_areas) if sum_areas > 0 else 0.0
|
295 |
+
else:
|
296 |
+
# Calculate mean Dice across all classes
|
297 |
+
class_dices = []
|
298 |
+
for idx in range(NUM_CLASSES):
|
299 |
+
class_dice = calculate_dice(y_true, y_pred, idx)
|
300 |
+
class_dices.append(class_dice)
|
301 |
+
|
302 |
+
dice = np.mean(class_dices)
|
303 |
|
304 |
+
return dice
|
305 |
+
|
306 |
+
|
307 |
+
def calculate_pixel_accuracy(y_true, y_pred):
|
308 |
+
"""
|
309 |
+
Calculate pixel accuracy
|
|
|
|
|
310 |
|
311 |
+
Args:
|
312 |
+
y_true: Ground truth mask
|
313 |
+
y_pred: Predicted mask
|
314 |
+
|
315 |
+
Returns:
|
316 |
+
Pixel accuracy
|
317 |
+
"""
|
318 |
+
correct = np.sum(y_true == y_pred)
|
319 |
+
total = y_true.size
|
320 |
+
return float(correct) / float(total)
|
321 |
+
|
322 |
+
|
323 |
+
def display_side_by_side(original_img, gt_mask=None, pred_mask=None, overlay=None):
|
324 |
+
"""
|
325 |
+
Display images side by side
|
326 |
+
|
327 |
+
Args:
|
328 |
+
original_img: Original input image
|
329 |
+
gt_mask: Ground truth segmentation mask (optional)
|
330 |
+
pred_mask: Predicted segmentation mask
|
331 |
+
overlay: Overlay of mask on original image
|
332 |
+
"""
|
333 |
+
# Determine number of columns based on available images
|
334 |
+
columns = 1 # Start with original image
|
335 |
+
if gt_mask is not None:
|
336 |
+
columns += 1
|
337 |
+
if pred_mask is not None:
|
338 |
+
columns += 1
|
339 |
+
if overlay is not None:
|
340 |
+
columns += 1
|
341 |
+
|
342 |
+
cols = st.columns(columns)
|
343 |
+
|
344 |
+
# Display original image
|
345 |
+
with cols[0]:
|
346 |
+
st.markdown("### Original Image")
|
347 |
+
st.image(original_img, use_column_width=True)
|
348 |
+
|
349 |
+
# Display ground truth mask if available
|
350 |
+
col_idx = 1
|
351 |
+
if gt_mask is not None:
|
352 |
+
with cols[col_idx]:
|
353 |
+
st.markdown("### Ground Truth Mask")
|
354 |
+
st.image(gt_mask, use_column_width=True)
|
355 |
+
col_idx += 1
|
356 |
+
|
357 |
+
# Display predicted mask if available
|
358 |
+
if pred_mask is not None:
|
359 |
+
with cols[col_idx]:
|
360 |
+
st.markdown("### Predicted Mask")
|
361 |
+
st.image(pred_mask, use_column_width=True)
|
362 |
+
col_idx += 1
|
363 |
+
|
364 |
+
# Display overlay if available
|
365 |
+
if overlay is not None:
|
366 |
+
with cols[col_idx]:
|
367 |
+
st.markdown("### Overlay")
|
368 |
+
st.image(overlay, use_column_width=True)
|
369 |
+
|
370 |
|
371 |
def main():
|
372 |
st.title("🐶 Pet Segmentation with SegFormer")
|
|
|
378 |
- **Foreground**: The pet itself
|
379 |
""")
|
380 |
|
381 |
+
# Sidebar settings
|
382 |
+
st.sidebar.title("Settings")
|
383 |
+
|
384 |
+
# Debug mode toggle
|
385 |
+
debug_mode = st.sidebar.checkbox("Debug Mode", value=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
386 |
|
387 |
+
# Dataset image toggle - important for processing Oxford-IIIT Pet masks
|
388 |
+
dataset_image = st.sidebar.checkbox("Image is from Oxford-IIIT Pet dataset", value=True)
|
389 |
|
390 |
+
# Overlay opacity control
|
391 |
overlay_opacity = st.sidebar.slider(
|
392 |
"Overlay Opacity",
|
393 |
min_value=0.1,
|
|
|
401 |
model = load_model()
|
402 |
|
403 |
if model is None:
|
404 |
+
st.error("Failed to load model. Please check your model path and try again.")
|
405 |
+
return
|
406 |
else:
|
407 |
st.sidebar.success("Model loaded successfully!")
|
408 |
|
|
|
418 |
image_bytes = uploaded_image.read()
|
419 |
image = Image.open(io.BytesIO(image_bytes))
|
420 |
|
|
|
|
|
|
|
|
|
|
|
|
|
421 |
# Preprocess and predict
|
422 |
with st.spinner("Generating segmentation mask..."):
|
423 |
# Preprocess the image
|
424 |
+
img_tensor, original_img = preprocess_image(image, is_dataset_image=dataset_image)
|
425 |
|
426 |
# Make prediction
|
427 |
outputs = model(pixel_values=img_tensor, training=False)
|
428 |
logits = outputs.logits
|
429 |
|
430 |
+
# Create mask
|
431 |
mask = create_mask(logits)
|
432 |
|
433 |
# Colorize the mask
|
|
|
436 |
# Create overlay
|
437 |
overlay = create_overlay(original_img, colorized_mask, alpha=overlay_opacity)
|
438 |
|
439 |
+
# Prepare for metrics calculation (if ground truth is provided)
|
440 |
+
gt_mask = None
|
441 |
+
gt_mask_colorized = None
|
442 |
+
metrics_calculated = False
|
443 |
+
|
444 |
+
# Calculate metrics if ground truth is uploaded
|
445 |
+
if uploaded_mask is not None:
|
446 |
+
try:
|
447 |
+
# Reset the file pointer to the beginning
|
448 |
+
uploaded_mask.seek(0)
|
449 |
+
|
450 |
+
# Read the mask file
|
451 |
+
mask_data = uploaded_mask.read()
|
452 |
+
mask_io = io.BytesIO(mask_data)
|
453 |
+
gt_mask_raw = np.array(Image.open(mask_io))
|
454 |
+
|
455 |
+
if debug_mode:
|
456 |
+
st.write(f"Ground truth mask shape: {gt_mask_raw.shape}")
|
457 |
+
st.write(f"Ground truth mask unique values: {np.unique(gt_mask_raw)}")
|
458 |
+
|
459 |
+
# Process the mask based on source
|
460 |
+
gt_mask = process_uploaded_mask(gt_mask_raw, from_dataset=dataset_image)
|
461 |
+
|
462 |
+
# Colorize for display
|
463 |
+
gt_mask_colorized = colorize_mask(gt_mask)
|
464 |
+
|
465 |
+
# Resize for comparison
|
466 |
+
gt_mask_resized = cv2.resize(gt_mask, (mask.shape[0], mask.shape[1]),
|
467 |
+
interpolation=cv2.INTER_NEAREST)
|
468 |
+
|
469 |
+
if debug_mode:
|
470 |
+
st.write(f"Processed GT mask shape: {gt_mask_resized.shape}")
|
471 |
+
st.write(f"Processed GT unique values: {np.unique(gt_mask_resized)}")
|
472 |
+
st.write(f"Prediction mask unique values: {np.unique(mask)}")
|
473 |
+
|
474 |
+
# Calculate metrics
|
475 |
+
iou_score = calculate_iou(gt_mask_resized, mask)
|
476 |
+
dice_score = calculate_dice(gt_mask_resized, mask)
|
477 |
+
accuracy = calculate_pixel_accuracy(gt_mask_resized, mask)
|
478 |
+
|
479 |
+
metrics_calculated = True
|
480 |
+
except Exception as e:
|
481 |
+
st.error(f"Error processing ground truth mask: {e}")
|
482 |
+
if debug_mode:
|
483 |
+
import traceback
|
484 |
+
st.code(traceback.format_exc())
|
485 |
+
|
486 |
# Display results
|
487 |
+
display_side_by_side(
|
488 |
+
original_img,
|
489 |
+
gt_mask_colorized,
|
490 |
+
colorized_mask,
|
491 |
+
overlay
|
492 |
+
)
|
493 |
+
|
494 |
+
# Display metrics if calculated
|
495 |
+
if metrics_calculated:
|
496 |
+
st.header("Segmentation Metrics")
|
497 |
+
|
498 |
+
# Display overall metrics
|
499 |
+
col1, col2, col3 = st.columns(3)
|
500 |
+
with col1:
|
501 |
+
st.metric("Mean IoU", f"{iou_score:.4f}")
|
502 |
+
with col2:
|
503 |
+
st.metric("Mean Dice", f"{dice_score:.4f}")
|
504 |
+
with col3:
|
505 |
+
st.metric("Pixel Accuracy", f"{accuracy:.4f}")
|
506 |
+
|
507 |
+
# Display class-specific metrics
|
508 |
+
st.subheader("Metrics by Class")
|
509 |
+
cols = st.columns(NUM_CLASSES)
|
510 |
+
class_names = ["Background", "Border", "Foreground/Pet"]
|
511 |
+
|
512 |
+
for i, (col, name) in enumerate(zip(cols, class_names)):
|
513 |
+
with col:
|
514 |
+
st.markdown(f"**{name}**")
|
515 |
+
class_iou = calculate_iou(gt_mask_resized, mask, i)
|
516 |
+
class_dice = calculate_dice(gt_mask_resized, mask, i)
|
517 |
+
st.metric("IoU", f"{class_iou:.4f}")
|
518 |
+
st.metric("Dice", f"{class_dice:.4f}")
|
519 |
|
520 |
# Display segmentation details
|
521 |
st.header("Segmentation Details")
|
|
|
539 |
mask_fg = np.where(mask == 2, 255, 0).astype(np.uint8)
|
540 |
st.image(mask_fg, caption="Foreground", use_column_width=True)
|
541 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
542 |
# Download buttons
|
543 |
+
st.header("Download Results")
|
544 |
+
col1, col2, col3 = st.columns(3)
|
545 |
|
546 |
with col1:
|
547 |
+
# Download prediction as PNG
|
548 |
+
pred_pil = Image.fromarray(colorized_mask)
|
549 |
+
pred_bytes = io.BytesIO()
|
550 |
+
pred_pil.save(pred_bytes, format='PNG')
|
551 |
+
pred_bytes = pred_bytes.getvalue()
|
552 |
|
553 |
st.download_button(
|
554 |
+
label="Download Prediction",
|
555 |
+
data=pred_bytes,
|
556 |
+
file_name="prediction.png",
|
557 |
mime="image/png"
|
558 |
)
|
559 |
|
560 |
with col2:
|
561 |
+
# Download overlay as PNG
|
562 |
+
overlay_pil = Image.fromarray(overlay)
|
563 |
overlay_bytes = io.BytesIO()
|
564 |
+
overlay_pil.save(overlay_bytes, format='PNG')
|
565 |
overlay_bytes = overlay_bytes.getvalue()
|
566 |
|
567 |
st.download_button(
|
568 |
+
label="Download Overlay",
|
569 |
data=overlay_bytes,
|
570 |
+
file_name="overlay.png",
|
571 |
mime="image/png"
|
572 |
)
|
573 |
+
|
574 |
+
if metrics_calculated:
|
575 |
+
with col3:
|
576 |
+
# Create CSV with metrics
|
577 |
+
metrics_csv = f"Metric,Overall,Background,Border,Foreground\n"
|
578 |
+
metrics_csv += f"IoU,{iou_score:.4f},{calculate_iou(gt_mask_resized, mask, 0):.4f},{calculate_iou(gt_mask_resized, mask, 1):.4f},{calculate_iou(gt_mask_resized, mask, 2):.4f}\n"
|
579 |
+
metrics_csv += f"Dice,{dice_score:.4f},{calculate_dice(gt_mask_resized, mask, 0):.4f},{calculate_dice(gt_mask_resized, mask, 1):.4f},{calculate_dice(gt_mask_resized, mask, 2)::.4f}\n"
|
580 |
+
metrics_csv += f"Accuracy,{accuracy:.4f},,,"
|
581 |
+
|
582 |
+
st.download_button(
|
583 |
+
label="Download Metrics",
|
584 |
+
data=metrics_csv,
|
585 |
+
file_name="metrics.csv",
|
586 |
+
mime="text/csv"
|
587 |
+
)
|
588 |
+
|
589 |
except Exception as e:
|
590 |
st.error(f"Error processing image: {e}")
|
591 |
+
if debug_mode:
|
592 |
+
import traceback
|
593 |
+
st.code(traceback.format_exc())
|
594 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
595 |
|
596 |
if __name__ == "__main__":
|
597 |
+
# Try to configure GPU memory growth
|
598 |
+
try:
|
599 |
+
gpus = tf.config.experimental.list_physical_devices('GPU')
|
600 |
+
if gpus:
|
601 |
+
for gpu in gpus:
|
602 |
+
tf.config.experimental.set_memory_growth(gpu, True)
|
603 |
+
except Exception as e:
|
604 |
+
print(f"GPU configuration error: {e}")
|
605 |
+
|
606 |
main()
|