Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, StoppingCriteria | |
import gradio as gr | |
import spaces | |
import torch | |
import numpy as np | |
import torch | |
import torchvision.transforms as T | |
from PIL import Image | |
from torchvision.transforms.functional import InterpolationMode | |
from transformers import AutoModel, AutoTokenizer | |
from PIL import Image, ExifTags | |
import cv2 | |
import numpy as np | |
import torch | |
from html2image import Html2Image | |
import tempfile | |
import os | |
import uuid | |
from scipy.ndimage import gaussian_filter | |
from threading import Thread | |
import re | |
import time | |
from PIL import Image | |
import torch | |
import spaces | |
import subprocess | |
import os | |
from moviepy.editor import VideoFileClip, AudioFileClip | |
import multiprocessing | |
import imageio | |
import tqdm | |
from concurrent.futures import ProcessPoolExecutor | |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) | |
from PIL import Image, ImageDraw, ImageFont | |
import textwrap | |
import uuid | |
import os | |
def generate_text_image_with_pil(old_text, input_token, new_token, image_width=400, min_height=1000, font_size=16): | |
import textwrap | |
import numpy as np | |
from PIL import Image, ImageDraw, ImageFont | |
# Split text by newlines first to preserve manual line breaks | |
paragraphs = old_text.split('\n') | |
# Add the token information to the last paragraph | |
input_token = input_token.replace("\n","\\n") | |
new_token = new_token.replace("\n","\\n") | |
if paragraphs: | |
paragraphs[-1] += f"[{input_token}]→[{new_token}]" | |
else: | |
paragraphs = [f"[{input_token}]→[{new_token}]"] | |
# Create a list to store all wrapped lines | |
all_lines = [] | |
# Process each paragraph separately | |
for paragraph in paragraphs: | |
# Only wrap if paragraph is not empty | |
if paragraph.strip(): | |
wrapped_lines = textwrap.wrap(paragraph, width=60) | |
all_lines.extend(wrapped_lines) | |
else: | |
# Add an empty line for empty paragraphs (newlines) | |
all_lines.append("") | |
# Create image | |
img = Image.new('RGB', (image_width, min_height), color='white') | |
draw = ImageDraw.Draw(img) | |
# Load font | |
font_path = "NotoSansCJK-Bold.ttc" | |
font = ImageFont.truetype(font_path, font_size) | |
# Draw text | |
y = 10 | |
token_marker = f"[{input_token}]→[{new_token}]" | |
for line in all_lines: | |
if token_marker in line: | |
parts = line.split(token_marker) | |
# Draw text before token | |
draw.text((10, y), parts[0], fill="black", font=font) | |
x = 10 + draw.textlength(parts[0], font=font) | |
# Draw input token in blue | |
draw.text((x, y), f"[{input_token}]", fill="blue", font=font) | |
x += draw.textlength(f"[{input_token}]", font=font) | |
# Draw arrow | |
draw.text((x, y), "→", fill="black", font=font) | |
x += draw.textlength("→", font=font) | |
# Draw new token in red | |
draw.text((x, y), f"[{new_token}]", fill="red", font=font) | |
# Draw remainder text if any | |
if len(parts) > 1 and parts[1]: | |
x += draw.textlength(f"[{new_token}]", font=font) | |
draw.text((x, y), parts[1], fill="black", font=font) | |
else: | |
print(token_marker) | |
print(line) | |
draw.text((10, y), line, fill="black", font=font) | |
# Move to next line, adding extra space between paragraphs | |
y += font_size + 8 | |
return np.array(img) | |
from PIL import Image, ImageDraw, ImageFont | |
def render_next_token_table_image(table_data, predict_token, image_width=500, row_height=40, font_size=14): | |
# Cài đặt font hỗ trợ đa ngôn ngữ (sửa đường dẫn nếu cần) | |
font_path = "NotoSansCJK-Bold.ttc" | |
font = ImageFont.truetype(font_path, font_size) | |
num_rows = len(table_data) + 2 # +2 cho phần tiêu đề | |
num_cols = 4 # Layer | Top1 | Top2 | Top3 | |
table_width = image_width | |
col_width = table_width // num_cols | |
table_height = num_rows * row_height | |
# Tạo ảnh trắng | |
img = Image.new("RGB", (table_width, table_height), "white") | |
draw = ImageDraw.Draw(img) | |
def draw_cell(x, y, text, color="black", bold=False): | |
if bold: | |
draw.text((x + 5, y + 5), text, font=font, fill=color) | |
else: | |
draw.text((x + 5, y + 5), text, font=font, fill=color) | |
# Vẽ hàng tiêu đề chính | |
draw.rectangle([0, 0, table_width, row_height], outline="black") | |
draw_cell(5, 5, "Hidden states per Transformer layer (LLM) for Prediction", bold=True) | |
# Vẽ tiêu đề cột | |
headers = ["Layer ⬆️", "Top 1", "Top 2", "Top 3"] | |
for col, header in enumerate(headers): | |
x0 = col * col_width | |
y0 = row_height | |
draw.rectangle([x0, y0, x0 + col_width, y0 + row_height], outline="black") | |
draw_cell(x0, y0, header, bold=True) | |
# Vẽ từng hàng layer | |
for i, (layer_index, tokens) in enumerate(table_data): | |
y = (i + 2) * row_height | |
for col in range(num_cols): | |
x = col * col_width | |
draw.rectangle([x, y, x + col_width, y + row_height], outline="black") | |
if col == 0: | |
draw_cell(x, y, f"Layer {layer_index+1}", bold=True) | |
else: | |
if col - 1 < len(tokens): | |
token_str, prob = tokens[col - 1] | |
# Thay \n bằng chuỗi "\\n" | |
token_str = token_str | |
color = "red" if token_str == predict_token and col == 1 else "blue" if col == 1 else "black" | |
bold = token_str == predict_token and col == 1 | |
if token_str.count(" ") == 1 and len(token_str) != 1: | |
token_str_ = token_str.replace("\n", "\\n").replace("\t", "\\t") | |
else: | |
token_str_ = token_str.replace("\n", "\\n").replace(" ", "\\s").replace("\t", "\\t") | |
draw_cell(x, y, f"{token_str_} ({prob:.1%})", color=color, bold=bold) | |
return np.array(img) | |
torch.set_default_device('cuda') | |
IMAGENET_MEAN = (0.485, 0.456, 0.406) | |
IMAGENET_STD = (0.229, 0.224, 0.225) | |
def build_transform(input_size): | |
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD | |
transform = T.Compose([ | |
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), | |
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), | |
T.ToTensor(), | |
T.Normalize(mean=MEAN, std=STD) | |
]) | |
return transform | |
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): | |
best_ratio_diff = float('inf') | |
best_ratio = (1, 1) | |
area = width * height | |
for ratio in target_ratios: | |
target_aspect_ratio = ratio[0] / ratio[1] | |
ratio_diff = abs(aspect_ratio - target_aspect_ratio) | |
if ratio_diff < best_ratio_diff: | |
best_ratio_diff = ratio_diff | |
best_ratio = ratio | |
elif ratio_diff == best_ratio_diff: | |
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: | |
best_ratio = ratio | |
return best_ratio | |
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False): | |
orig_width, orig_height = image.size | |
aspect_ratio = orig_width / orig_height | |
# calculate the existing image aspect ratio | |
target_ratios = set( | |
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if | |
i * j <= max_num and i * j >= min_num) | |
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) | |
# find the closest aspect ratio to the target | |
target_aspect_ratio = find_closest_aspect_ratio( | |
aspect_ratio, target_ratios, orig_width, orig_height, image_size) | |
# calculate the target width and height | |
target_width = image_size * target_aspect_ratio[0] | |
target_height = image_size * target_aspect_ratio[1] | |
blocks = target_aspect_ratio[0] * target_aspect_ratio[1] | |
# resize the image | |
resized_img = image.resize((target_width, target_height)) | |
processed_images = [] | |
for i in range(blocks): | |
box = ( | |
(i % (target_width // image_size)) * image_size, | |
(i // (target_width // image_size)) * image_size, | |
((i % (target_width // image_size)) + 1) * image_size, | |
((i // (target_width // image_size)) + 1) * image_size | |
) | |
# split the image | |
split_img = resized_img.crop(box) | |
processed_images.append(split_img) | |
assert len(processed_images) == blocks | |
if use_thumbnail and len(processed_images) != 1: | |
thumbnail_img = image.resize((image_size, image_size)) | |
processed_images.append(thumbnail_img) | |
return processed_images, target_aspect_ratio | |
def correct_image_orientation(image_path): | |
# Mở ảnh | |
image = Image.open(image_path) | |
# Kiểm tra dữ liệu Exif (nếu có) | |
try: | |
exif = image._getexif() | |
if exif is not None: | |
for tag, value in exif.items(): | |
if ExifTags.TAGS.get(tag) == "Orientation": | |
# Sửa hướng dựa trên Orientation | |
if value == 3: | |
image = image.rotate(180, expand=True) | |
elif value == 6: | |
image = image.rotate(-90, expand=True) | |
elif value == 8: | |
image = image.rotate(90, expand=True) | |
break | |
except Exception as e: | |
print("Không thể xử lý Exif:", e) | |
return image | |
def load_image(image_file, input_size=448, max_num=12, target_aspect_ratio=False): | |
image = correct_image_orientation(image_file).convert('RGB') | |
transform = build_transform(input_size=input_size) | |
images, target_aspect_ratio = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num) | |
pixel_values = [transform(image) for image in images] | |
pixel_values = torch.stack(pixel_values) | |
if target_aspect_ratio: | |
return pixel_values, target_aspect_ratio | |
else: | |
return pixel_values | |
def visualize_attention_hiddenstate(attention_tensor, head=None, start_img_token_index=0, end_img_token_index=0, target_aspect_ratio=(0,0)): | |
"""Vẽ heatmap của attention scores từ trung bình 8 layer cuối và trả về top 5 token có attention cao nhất.""" | |
last_8_layers = attention_tensor[-8:] # Lấy 8 layer cuối | |
averaged_layer = np.mean(last_8_layers,axis=0) # Trung bình 8 layer cuối | |
if head is None: | |
averaged_attention = averaged_layer.mean(axis=1) # Trung bình qua các head | |
else: | |
averaged_attention = averaged_layer[:, head, :, :] # Chọn head cụ thể | |
heat_maps = [] | |
top_5_tokens = [] | |
for i in range(len(averaged_attention)): # Duyệt qua các beam | |
h_target_aspect_ratio = target_aspect_ratio[1] if target_aspect_ratio[1] != 0 else 1 | |
w_target_aspect_ratio = target_aspect_ratio[0] if target_aspect_ratio[0] != 0 else 1 | |
img_atten_score = averaged_attention[i].reshape(-1)[start_img_token_index:end_img_token_index] | |
# Lấy index của 5 token có attention cao nhất | |
top_5_indices = np.argsort(img_atten_score)[-5:][::-1] # Sắp xếp giảm dần | |
top_5_values = img_atten_score[top_5_indices] | |
# top_5_tokens.append(list(zip(top_5_indices + start_img_token_index, top_5_values))) | |
top_5_tokens.append(list(top_5_indices + start_img_token_index)) | |
# Reshape lại attention để vẽ heatmap | |
img_atten_score = img_atten_score.reshape(h_target_aspect_ratio, w_target_aspect_ratio, 16, 16) | |
img_atten_score = np.transpose(img_atten_score, (0, 2, 1, 3)).reshape(h_target_aspect_ratio * 16, w_target_aspect_ratio * 16) | |
img_atten_score = np.power(img_atten_score, 0.9) | |
heat_maps.append(img_atten_score) | |
return heat_maps, top_5_tokens | |
# def adjust_overlay(overlay, text_img): | |
# h_o, w_o = overlay.shape[:2] | |
# h_t, w_t = text_img.shape[:2] | |
# if h_o > w_o: # Overlay là ảnh đứng | |
# # Resize overlay sao cho h = h_t, giữ nguyên tỷ lệ | |
# new_h = h_t | |
# new_w = int(w_o * (new_h / h_o)) | |
# overlay_resized = cv2.resize(overlay, (new_w, new_h)) | |
# else: # Overlay là ảnh ngang | |
# # Giữ nguyên overlay, nhưng nếu h < h_t thì thêm padding trắng | |
# overlay_resized = overlay.copy() | |
# # Thêm padding trắng nếu overlay có h < h_t | |
# if overlay_resized.shape[0] < h_t: | |
# pad_h = h_t - overlay_resized.shape[0] | |
# padding = np.ones((pad_h, overlay_resized.shape[1], 3), dtype=np.uint8) * 255 | |
# overlay_resized = np.vstack((overlay_resized, padding)) # Padding vào dưới | |
# # Đảm bảo overlay có cùng chiều cao với text_img | |
# if overlay_resized.shape[0] != h_t: | |
# overlay_resized = cv2.resize(overlay_resized, (overlay_resized.shape[1], h_t)) | |
# return overlay_resized | |
def adjust_overlay(overlay, text_img): | |
h_o, w_o = overlay.shape[:2] | |
h_t, w_t = text_img.shape[:2] | |
# Resize overlay sao cho chiều ngang <= 500, chiều dọc <= 1000 (giữ nguyên tỉ lệ) | |
scale = min(500 / w_o, 1000 / h_o, 1.0) # không phóng to quá kích thước gốc | |
new_w = int(w_o * scale) | |
new_h = int(h_o * scale) | |
overlay_resized = cv2.resize(overlay, (new_w, new_h)) | |
# Nếu overlay nhỏ hơn chiều cao của text_img thì thêm padding trắng bên dưới | |
if overlay_resized.shape[0] < h_t: | |
pad_h = h_t - overlay_resized.shape[0] | |
padding = np.ones((pad_h, overlay_resized.shape[1], 3), dtype=np.uint8) * 255 | |
overlay_resized = np.vstack((overlay_resized, padding)) | |
return overlay_resized | |
def extract_next_token_table_data(model, tokenizer, response, index_focus): | |
next_token_table = [] | |
for layer_index in range(len(response.hidden_states[index_focus])): | |
h_out = model.language_model.lm_head( | |
model.language_model.model.norm(response.hidden_states[index_focus][layer_index][0]) | |
) | |
h_out = torch.softmax(h_out, -1) | |
top_tokens = [] | |
for token_index in h_out.argsort(descending=True)[0, :3]: # Top 3 | |
token_str = tokenizer.decode(token_index) | |
prob = float(h_out[0, int(token_index)]) | |
top_tokens.append((token_str, prob)) | |
next_token_table.append((layer_index, top_tokens)) | |
next_token_table = next_token_table[::-1] | |
return next_token_table | |
model = AutoModel.from_pretrained( | |
"khang119966/Vintern-1B-v3_5-explainableAI", | |
torch_dtype=torch.bfloat16, | |
low_cpu_mem_usage=True, | |
trust_remote_code=True, | |
use_flash_attn=False, | |
).eval().cuda() | |
tokenizer = AutoTokenizer.from_pretrained("khang119966/Vintern-1B-v3_5-explainableAI", trust_remote_code=True, use_fast=False) | |
def generate_text_img_wrapper(args): | |
return generate_text_image_with_pil(*args, image_width=500, min_height=1000) | |
def generate_hidden_img_wrapper(args): | |
return render_next_token_table_image(*args) | |
def generate_video(image, prompt, max_tokens): | |
print(image) | |
pixel_values, target_aspect_ratio = load_image(image, max_num=6) | |
pixel_values = pixel_values.to(torch.bfloat16).cuda() | |
generation_config = dict(max_new_tokens= int(max_tokens), do_sample=False, num_beams = 3, repetition_penalty=2.5) | |
response, query = model.chat(tokenizer, pixel_values, '<image>\n'+prompt, generation_config, return_history=False, \ | |
attention_visualize=True,last_visualize_layers=7,raw_image_path=image,target_aspect_ratio=target_aspect_ratio) | |
###### GET GOOD BEAM ##### | |
response_attentions_list = [] | |
response_hidden_states_list = [] | |
for index in range(len(response.beam_indices[0])): | |
beam_indice = response.beam_indices[0][index] | |
layer_response_attentions_list = [] | |
layer_response_hidden_states_list = [] | |
for layer_index in range(len(response.attentions[index])): | |
layer_response_attentions_list.append(torch.unsqueeze(response.attentions[index][layer_index][beam_indice],0)) | |
layer_response_hidden_states_list.append(torch.unsqueeze(response.hidden_states[index][layer_index][beam_indice],0)) | |
response_attentions_list.append(layer_response_attentions_list) | |
response_hidden_states_list.append(layer_response_hidden_states_list) | |
response.attentions = response_attentions_list | |
response.hidden_states = response_hidden_states_list | |
generation_output = response | |
raw_image_path = image | |
attentions_tensors = [] | |
for tok_ in generation_output["attentions"]: | |
attentions_tensors.append([]) | |
for lay_ in tok_ : | |
attentions_tensors[-1].append(lay_.detach().cpu().type(torch.float).numpy()) | |
attention_scores = attentions_tensors | |
query_ = tokenizer(query) | |
start_img_token_index = int(np.where(np.array(query_["input_ids"])==tokenizer("<img>")["input_ids"][0])[0]+1) | |
end_img_token_index = int(np.where(np.array(query_["input_ids"])==tokenizer("</img>")["input_ids"][0])[0]-256) | |
if end_img_token_index - start_img_token_index == 0 : | |
end_img_token_index = int(np.where(np.array(query_["input_ids"])==tokenizer("</img>")["input_ids"][0])[0]) | |
# Đọc ảnh gốc | |
image = cv2.imread(raw_image_path) | |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
# Resize ảnh nhỏ hơn để giảm dung lượng GIF | |
scale_factor = 1. # Giảm 50% kích thước | |
alpha = 0.4 | |
# Lưu danh sách frames GIF | |
visualization_frames = [] | |
# Chuỗi sinh ra | |
generated_text = "" | |
frame_step = 1 | |
input_token = "" | |
params_for_text = [] | |
params_for_hidden = [] | |
heatmap_imgs = [] | |
top_visual_tokens_focus_tables = [] | |
# Lặp qua từng token | |
for index_focus in tqdm.tqdm(range(0, generation_output.sequences.shape[1], frame_step)): | |
predict_token_text = tokenizer.decode(generation_output.sequences[0, index_focus]) | |
generated_text += predict_token_text # Ghép chữ lại | |
# Tạo heatmap trung bình từ các lớp attention | |
heat_maps, top_visual_tokens_focus = visualize_attention_hiddenstate(attention_scores[index_focus], head=None, | |
start_img_token_index=start_img_token_index, end_img_token_index=end_img_token_index, | |
target_aspect_ratio=target_aspect_ratio) | |
heatmap = np.array(heat_maps[0]) | |
# Resize heatmap về kích thước ảnh gốc | |
heatmap = cv2.resize(heatmap, (image.shape[1], image.shape[0]), interpolation=cv2.INTER_CUBIC) | |
# Làm mượt heatmap | |
heatmap_smooth = gaussian_filter(heatmap, sigma=1) | |
# Chuẩn hóa heatmap về 0-255 | |
heatmap_norm = cv2.normalize(heatmap_smooth, None, 0, 255, cv2.NORM_MINMAX).astype(np.uint8) | |
heatmap_color = cv2.applyColorMap(heatmap_norm, cv2.COLORMAP_JET) | |
heatmap_color = cv2.cvtColor(heatmap_color, cv2.COLOR_BGR2RGB) | |
# Overlay ảnh heatmap lên ảnh gốc | |
overlay = cv2.addWeighted(image, 1 - alpha, heatmap_color, alpha, 0) | |
prev_text = generated_text[:-len(input_token)-len(predict_token_text)] | |
params_for_text.append((prev_text, input_token, predict_token_text)) | |
hidden_tabel = extract_next_token_table_data(model, tokenizer, generation_output, index_focus) | |
params_for_hidden.append((hidden_tabel,predict_token_text)) | |
input_token = predict_token_text | |
heatmap_imgs.append(overlay) | |
# Dùng multiprocessing | |
# with multiprocessing.Pool(processes=20) as pool: | |
# with ProcessPoolExecutor(max_workers=20) as pool: | |
# ctx = multiprocessing.get_context() | |
# ctx.Process(target=lambda: None).daemon = False | |
# with ctx.Pool(processes=20) as pool: | |
# text_imgs = pool.map(generate_text_img_wrapper, params_for_text) | |
# hidden_imgs = pool.map(generate_hidden_img_wrapper, params_for_hidden) | |
text_imgs = [] | |
for param in tqdm.tqdm(params_for_text): | |
result = generate_text_img_wrapper(param) | |
text_imgs.append(result) | |
hidden_imgs = [] | |
for param in tqdm.tqdm(params_for_hidden): | |
result = generate_hidden_img_wrapper(param) | |
hidden_imgs.append(result) | |
for i in range(len(text_imgs)): | |
overlay = heatmap_imgs[i] | |
text_img = text_imgs[i] | |
predict_hidden_states = hidden_imgs[i] | |
overlay_adjusted = adjust_overlay(overlay, text_img) | |
predict_hidden_states = adjust_overlay(predict_hidden_states, text_img) | |
combined_image = np.hstack((overlay_adjusted, text_img, predict_hidden_states)) | |
visualization_frames.append(combined_image) | |
resized_visualization_frames = [] | |
for frame in visualization_frames: | |
frame = cv2.resize(frame,(visualization_frames[0].shape[1],visualization_frames[0].shape[0])) | |
resized_visualization_frames.append(frame) | |
# Lưu thành video MP4 bằng imageio | |
imageio.mimsave( | |
'heatmap_animation.mp4', | |
resized_visualization_frames, # dạng RGB | |
fps=5 | |
) | |
# Nối video và nhạc | |
video = VideoFileClip("heatmap_animation.mp4") | |
audio = AudioFileClip("legacy-of-the-century-background-cinematic-music-for-video-46-second-319542.mp3").set_duration(video.duration) | |
final = video.set_audio(audio) | |
final.write_videofile("heatmap_with_music.mp4", codec="libx264", audio_codec="aac", ffmpeg_params=["-pix_fmt", "yuv420p"]) | |
return "heatmap_with_music.mp4" | |
with gr.Blocks() as demo: | |
gr.Markdown("""# 🎥 Visualizing How Multimodal Models Think | |
- This tool generates a video to **visualize how a multimodal model (image + text)** attends to different parts of an image while generating text. | |
📌 What it does: - Takes an input image and a text prompt. - Shows how the model’s attention shifts on the image for each generated token. - Helps explain the model’s behavior and decision-making. | |
🖼️ Video layout (per frame): Each frame in the video includes: 1. 🔥 **Heatmap over image**: Shows which area the model focuses on. 2. 📝 **Generated text**: With old context, current token highlighted. 3. 📊 **Token prediction table**: Shows the model’s top next-token guesses. | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
image = gr.Image(label="Upload your image", type = 'filepath') | |
prompt = gr.Textbox(label="Describe your prompt", value="List all the text." ) | |
max_tokens = gr.Slider(label="Max token output (⚠️ Choose <100 for faster response)", minimum=1, maximum=256, value=50) | |
btn = gr.Button("Inference") | |
video = gr.Video(label="Visualization Video") | |
btn.click(fn=generate_video, inputs=[image, prompt, max_tokens], outputs=video) | |
if __name__ == "__main__": | |
demo.launch() |