import gradio as gr import torch from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, StoppingCriteria import gradio as gr import spaces import torch import numpy as np import torch import torchvision.transforms as T from PIL import Image from torchvision.transforms.functional import InterpolationMode from transformers import AutoModel, AutoTokenizer from PIL import Image, ExifTags import cv2 import numpy as np import torch from html2image import Html2Image import tempfile import os import uuid from scipy.ndimage import gaussian_filter from threading import Thread import re import time from PIL import Image import torch import spaces import subprocess import os from moviepy.editor import VideoFileClip, AudioFileClip import multiprocessing import imageio import tqdm from concurrent.futures import ProcessPoolExecutor subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) from PIL import Image, ImageDraw, ImageFont import textwrap import uuid import os def generate_text_image_with_pil(old_text, input_token, new_token, image_width=400, min_height=1000, font_size=16): import textwrap import numpy as np from PIL import Image, ImageDraw, ImageFont # Split text by newlines first to preserve manual line breaks paragraphs = old_text.split('\n') # Add the token information to the last paragraph input_token = input_token.replace("\n","\\n") new_token = new_token.replace("\n","\\n") if paragraphs: paragraphs[-1] += f"[{input_token}]→[{new_token}]" else: paragraphs = [f"[{input_token}]→[{new_token}]"] # Create a list to store all wrapped lines all_lines = [] # Process each paragraph separately for paragraph in paragraphs: # Only wrap if paragraph is not empty if paragraph.strip(): wrapped_lines = textwrap.wrap(paragraph, width=60) all_lines.extend(wrapped_lines) else: # Add an empty line for empty paragraphs (newlines) all_lines.append("") # Create image img = Image.new('RGB', (image_width, min_height), color='white') draw = ImageDraw.Draw(img) # Load font font_path = "NotoSansCJK-Bold.ttc" font = ImageFont.truetype(font_path, font_size) # Draw text y = 10 token_marker = f"[{input_token}]→[{new_token}]" for line in all_lines: if token_marker in line: parts = line.split(token_marker) # Draw text before token draw.text((10, y), parts[0], fill="black", font=font) x = 10 + draw.textlength(parts[0], font=font) # Draw input token in blue draw.text((x, y), f"[{input_token}]", fill="blue", font=font) x += draw.textlength(f"[{input_token}]", font=font) # Draw arrow draw.text((x, y), "→", fill="black", font=font) x += draw.textlength("→", font=font) # Draw new token in red draw.text((x, y), f"[{new_token}]", fill="red", font=font) # Draw remainder text if any if len(parts) > 1 and parts[1]: x += draw.textlength(f"[{new_token}]", font=font) draw.text((x, y), parts[1], fill="black", font=font) else: print(token_marker) print(line) draw.text((10, y), line, fill="black", font=font) # Move to next line, adding extra space between paragraphs y += font_size + 8 return np.array(img) from PIL import Image, ImageDraw, ImageFont def render_next_token_table_image(table_data, predict_token, image_width=500, row_height=40, font_size=14): # Cài đặt font hỗ trợ đa ngôn ngữ (sửa đường dẫn nếu cần) font_path = "NotoSansCJK-Bold.ttc" font = ImageFont.truetype(font_path, font_size) num_rows = len(table_data) + 2 # +2 cho phần tiêu đề num_cols = 4 # Layer | Top1 | Top2 | Top3 table_width = image_width col_width = table_width // num_cols table_height = num_rows * row_height # Tạo ảnh trắng img = Image.new("RGB", (table_width, table_height), "white") draw = ImageDraw.Draw(img) def draw_cell(x, y, text, color="black", bold=False): if bold: draw.text((x + 5, y + 5), text, font=font, fill=color) else: draw.text((x + 5, y + 5), text, font=font, fill=color) # Vẽ hàng tiêu đề chính draw.rectangle([0, 0, table_width, row_height], outline="black") draw_cell(5, 5, "Hidden states per Transformer layer (LLM) for Prediction", bold=True) # Vẽ tiêu đề cột headers = ["Layer ⬆️", "Top 1", "Top 2", "Top 3"] for col, header in enumerate(headers): x0 = col * col_width y0 = row_height draw.rectangle([x0, y0, x0 + col_width, y0 + row_height], outline="black") draw_cell(x0, y0, header, bold=True) # Vẽ từng hàng layer for i, (layer_index, tokens) in enumerate(table_data): y = (i + 2) * row_height for col in range(num_cols): x = col * col_width draw.rectangle([x, y, x + col_width, y + row_height], outline="black") if col == 0: draw_cell(x, y, f"Layer {layer_index+1}", bold=True) else: if col - 1 < len(tokens): token_str, prob = tokens[col - 1] # Thay \n bằng chuỗi "\\n" token_str = token_str color = "red" if token_str == predict_token and col == 1 else "blue" if col == 1 else "black" bold = token_str == predict_token and col == 1 if token_str.count(" ") == 1 and len(token_str) != 1: token_str_ = token_str.replace("\n", "\\n").replace("\t", "\\t") else: token_str_ = token_str.replace("\n", "\\n").replace(" ", "\\s").replace("\t", "\\t") draw_cell(x, y, f"{token_str_} ({prob:.1%})", color=color, bold=bold) return np.array(img) torch.set_default_device('cuda') IMAGENET_MEAN = (0.485, 0.456, 0.406) IMAGENET_STD = (0.229, 0.224, 0.225) def build_transform(input_size): MEAN, STD = IMAGENET_MEAN, IMAGENET_STD transform = T.Compose([ T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), T.ToTensor(), T.Normalize(mean=MEAN, std=STD) ]) return transform def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): best_ratio_diff = float('inf') best_ratio = (1, 1) area = width * height for ratio in target_ratios: target_aspect_ratio = ratio[0] / ratio[1] ratio_diff = abs(aspect_ratio - target_aspect_ratio) if ratio_diff < best_ratio_diff: best_ratio_diff = ratio_diff best_ratio = ratio elif ratio_diff == best_ratio_diff: if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: best_ratio = ratio return best_ratio def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False): orig_width, orig_height = image.size aspect_ratio = orig_width / orig_height # calculate the existing image aspect ratio target_ratios = set( (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if i * j <= max_num and i * j >= min_num) target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) # find the closest aspect ratio to the target target_aspect_ratio = find_closest_aspect_ratio( aspect_ratio, target_ratios, orig_width, orig_height, image_size) # calculate the target width and height target_width = image_size * target_aspect_ratio[0] target_height = image_size * target_aspect_ratio[1] blocks = target_aspect_ratio[0] * target_aspect_ratio[1] # resize the image resized_img = image.resize((target_width, target_height)) processed_images = [] for i in range(blocks): box = ( (i % (target_width // image_size)) * image_size, (i // (target_width // image_size)) * image_size, ((i % (target_width // image_size)) + 1) * image_size, ((i // (target_width // image_size)) + 1) * image_size ) # split the image split_img = resized_img.crop(box) processed_images.append(split_img) assert len(processed_images) == blocks if use_thumbnail and len(processed_images) != 1: thumbnail_img = image.resize((image_size, image_size)) processed_images.append(thumbnail_img) return processed_images, target_aspect_ratio def correct_image_orientation(image_path): # Mở ảnh image = Image.open(image_path) # Kiểm tra dữ liệu Exif (nếu có) try: exif = image._getexif() if exif is not None: for tag, value in exif.items(): if ExifTags.TAGS.get(tag) == "Orientation": # Sửa hướng dựa trên Orientation if value == 3: image = image.rotate(180, expand=True) elif value == 6: image = image.rotate(-90, expand=True) elif value == 8: image = image.rotate(90, expand=True) break except Exception as e: print("Không thể xử lý Exif:", e) return image def load_image(image_file, input_size=448, max_num=12, target_aspect_ratio=False): image = correct_image_orientation(image_file).convert('RGB') transform = build_transform(input_size=input_size) images, target_aspect_ratio = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num) pixel_values = [transform(image) for image in images] pixel_values = torch.stack(pixel_values) if target_aspect_ratio: return pixel_values, target_aspect_ratio else: return pixel_values def visualize_attention_hiddenstate(attention_tensor, head=None, start_img_token_index=0, end_img_token_index=0, target_aspect_ratio=(0,0)): """Vẽ heatmap của attention scores từ trung bình 8 layer cuối và trả về top 5 token có attention cao nhất.""" last_8_layers = attention_tensor[-8:] # Lấy 8 layer cuối averaged_layer = np.mean(last_8_layers,axis=0) # Trung bình 8 layer cuối if head is None: averaged_attention = averaged_layer.mean(axis=1) # Trung bình qua các head else: averaged_attention = averaged_layer[:, head, :, :] # Chọn head cụ thể heat_maps = [] top_5_tokens = [] for i in range(len(averaged_attention)): # Duyệt qua các beam h_target_aspect_ratio = target_aspect_ratio[1] if target_aspect_ratio[1] != 0 else 1 w_target_aspect_ratio = target_aspect_ratio[0] if target_aspect_ratio[0] != 0 else 1 img_atten_score = averaged_attention[i].reshape(-1)[start_img_token_index:end_img_token_index] # Lấy index của 5 token có attention cao nhất top_5_indices = np.argsort(img_atten_score)[-5:][::-1] # Sắp xếp giảm dần top_5_values = img_atten_score[top_5_indices] # top_5_tokens.append(list(zip(top_5_indices + start_img_token_index, top_5_values))) top_5_tokens.append(list(top_5_indices + start_img_token_index)) # Reshape lại attention để vẽ heatmap img_atten_score = img_atten_score.reshape(h_target_aspect_ratio, w_target_aspect_ratio, 16, 16) img_atten_score = np.transpose(img_atten_score, (0, 2, 1, 3)).reshape(h_target_aspect_ratio * 16, w_target_aspect_ratio * 16) img_atten_score = np.power(img_atten_score, 0.9) heat_maps.append(img_atten_score) return heat_maps, top_5_tokens # def adjust_overlay(overlay, text_img): # h_o, w_o = overlay.shape[:2] # h_t, w_t = text_img.shape[:2] # if h_o > w_o: # Overlay là ảnh đứng # # Resize overlay sao cho h = h_t, giữ nguyên tỷ lệ # new_h = h_t # new_w = int(w_o * (new_h / h_o)) # overlay_resized = cv2.resize(overlay, (new_w, new_h)) # else: # Overlay là ảnh ngang # # Giữ nguyên overlay, nhưng nếu h < h_t thì thêm padding trắng # overlay_resized = overlay.copy() # # Thêm padding trắng nếu overlay có h < h_t # if overlay_resized.shape[0] < h_t: # pad_h = h_t - overlay_resized.shape[0] # padding = np.ones((pad_h, overlay_resized.shape[1], 3), dtype=np.uint8) * 255 # overlay_resized = np.vstack((overlay_resized, padding)) # Padding vào dưới # # Đảm bảo overlay có cùng chiều cao với text_img # if overlay_resized.shape[0] != h_t: # overlay_resized = cv2.resize(overlay_resized, (overlay_resized.shape[1], h_t)) # return overlay_resized def adjust_overlay(overlay, text_img): h_o, w_o = overlay.shape[:2] h_t, w_t = text_img.shape[:2] # Resize overlay sao cho chiều ngang <= 500, chiều dọc <= 1000 (giữ nguyên tỉ lệ) scale = min(500 / w_o, 1000 / h_o, 1.0) # không phóng to quá kích thước gốc new_w = int(w_o * scale) new_h = int(h_o * scale) overlay_resized = cv2.resize(overlay, (new_w, new_h)) # Nếu overlay nhỏ hơn chiều cao của text_img thì thêm padding trắng bên dưới if overlay_resized.shape[0] < h_t: pad_h = h_t - overlay_resized.shape[0] padding = np.ones((pad_h, overlay_resized.shape[1], 3), dtype=np.uint8) * 255 overlay_resized = np.vstack((overlay_resized, padding)) return overlay_resized def extract_next_token_table_data(model, tokenizer, response, index_focus): next_token_table = [] for layer_index in range(len(response.hidden_states[index_focus])): h_out = model.language_model.lm_head( model.language_model.model.norm(response.hidden_states[index_focus][layer_index][0]) ) h_out = torch.softmax(h_out, -1) top_tokens = [] for token_index in h_out.argsort(descending=True)[0, :3]: # Top 3 token_str = tokenizer.decode(token_index) prob = float(h_out[0, int(token_index)]) top_tokens.append((token_str, prob)) next_token_table.append((layer_index, top_tokens)) next_token_table = next_token_table[::-1] return next_token_table model = AutoModel.from_pretrained( "khang119966/Vintern-1B-v3_5-explainableAI", torch_dtype=torch.bfloat16, low_cpu_mem_usage=True, trust_remote_code=True, use_flash_attn=False, ).eval().cuda() tokenizer = AutoTokenizer.from_pretrained("khang119966/Vintern-1B-v3_5-explainableAI", trust_remote_code=True, use_fast=False) def generate_text_img_wrapper(args): return generate_text_image_with_pil(*args, image_width=500, min_height=1000) def generate_hidden_img_wrapper(args): return render_next_token_table_image(*args) @spaces.GPU(duration=120) def generate_video(image, prompt, max_tokens): print(image) pixel_values, target_aspect_ratio = load_image(image, max_num=6) pixel_values = pixel_values.to(torch.bfloat16).cuda() generation_config = dict(max_new_tokens= int(max_tokens), do_sample=False, num_beams = 3, repetition_penalty=2.5) response, query = model.chat(tokenizer, pixel_values, '\n'+prompt, generation_config, return_history=False, \ attention_visualize=True,last_visualize_layers=7,raw_image_path=image,target_aspect_ratio=target_aspect_ratio) ###### GET GOOD BEAM ##### response_attentions_list = [] response_hidden_states_list = [] for index in range(len(response.beam_indices[0])): beam_indice = response.beam_indices[0][index] layer_response_attentions_list = [] layer_response_hidden_states_list = [] for layer_index in range(len(response.attentions[index])): layer_response_attentions_list.append(torch.unsqueeze(response.attentions[index][layer_index][beam_indice],0)) layer_response_hidden_states_list.append(torch.unsqueeze(response.hidden_states[index][layer_index][beam_indice],0)) response_attentions_list.append(layer_response_attentions_list) response_hidden_states_list.append(layer_response_hidden_states_list) response.attentions = response_attentions_list response.hidden_states = response_hidden_states_list generation_output = response raw_image_path = image attentions_tensors = [] for tok_ in generation_output["attentions"]: attentions_tensors.append([]) for lay_ in tok_ : attentions_tensors[-1].append(lay_.detach().cpu().type(torch.float).numpy()) attention_scores = attentions_tensors query_ = tokenizer(query) start_img_token_index = int(np.where(np.array(query_["input_ids"])==tokenizer("")["input_ids"][0])[0]+1) end_img_token_index = int(np.where(np.array(query_["input_ids"])==tokenizer("")["input_ids"][0])[0]-256) if end_img_token_index - start_img_token_index == 0 : end_img_token_index = int(np.where(np.array(query_["input_ids"])==tokenizer("")["input_ids"][0])[0]) # Đọc ảnh gốc image = cv2.imread(raw_image_path) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # Resize ảnh nhỏ hơn để giảm dung lượng GIF scale_factor = 1. # Giảm 50% kích thước alpha = 0.4 # Lưu danh sách frames GIF visualization_frames = [] # Chuỗi sinh ra generated_text = "" frame_step = 1 input_token = "" params_for_text = [] params_for_hidden = [] heatmap_imgs = [] top_visual_tokens_focus_tables = [] # Lặp qua từng token for index_focus in tqdm.tqdm(range(0, generation_output.sequences.shape[1], frame_step)): predict_token_text = tokenizer.decode(generation_output.sequences[0, index_focus]) generated_text += predict_token_text # Ghép chữ lại # Tạo heatmap trung bình từ các lớp attention heat_maps, top_visual_tokens_focus = visualize_attention_hiddenstate(attention_scores[index_focus], head=None, start_img_token_index=start_img_token_index, end_img_token_index=end_img_token_index, target_aspect_ratio=target_aspect_ratio) heatmap = np.array(heat_maps[0]) # Resize heatmap về kích thước ảnh gốc heatmap = cv2.resize(heatmap, (image.shape[1], image.shape[0]), interpolation=cv2.INTER_CUBIC) # Làm mượt heatmap heatmap_smooth = gaussian_filter(heatmap, sigma=1) # Chuẩn hóa heatmap về 0-255 heatmap_norm = cv2.normalize(heatmap_smooth, None, 0, 255, cv2.NORM_MINMAX).astype(np.uint8) heatmap_color = cv2.applyColorMap(heatmap_norm, cv2.COLORMAP_JET) heatmap_color = cv2.cvtColor(heatmap_color, cv2.COLOR_BGR2RGB) # Overlay ảnh heatmap lên ảnh gốc overlay = cv2.addWeighted(image, 1 - alpha, heatmap_color, alpha, 0) prev_text = generated_text[:-len(input_token)-len(predict_token_text)] params_for_text.append((prev_text, input_token, predict_token_text)) hidden_tabel = extract_next_token_table_data(model, tokenizer, generation_output, index_focus) params_for_hidden.append((hidden_tabel,predict_token_text)) input_token = predict_token_text heatmap_imgs.append(overlay) # Dùng multiprocessing # with multiprocessing.Pool(processes=20) as pool: # with ProcessPoolExecutor(max_workers=20) as pool: # ctx = multiprocessing.get_context() # ctx.Process(target=lambda: None).daemon = False # with ctx.Pool(processes=20) as pool: # text_imgs = pool.map(generate_text_img_wrapper, params_for_text) # hidden_imgs = pool.map(generate_hidden_img_wrapper, params_for_hidden) text_imgs = [] for param in tqdm.tqdm(params_for_text): result = generate_text_img_wrapper(param) text_imgs.append(result) hidden_imgs = [] for param in tqdm.tqdm(params_for_hidden): result = generate_hidden_img_wrapper(param) hidden_imgs.append(result) for i in range(len(text_imgs)): overlay = heatmap_imgs[i] text_img = text_imgs[i] predict_hidden_states = hidden_imgs[i] overlay_adjusted = adjust_overlay(overlay, text_img) predict_hidden_states = adjust_overlay(predict_hidden_states, text_img) combined_image = np.hstack((overlay_adjusted, text_img, predict_hidden_states)) visualization_frames.append(combined_image) resized_visualization_frames = [] for frame in visualization_frames: frame = cv2.resize(frame,(visualization_frames[0].shape[1],visualization_frames[0].shape[0])) resized_visualization_frames.append(frame) # Lưu thành video MP4 bằng imageio imageio.mimsave( 'heatmap_animation.mp4', resized_visualization_frames, # dạng RGB fps=5 ) # Nối video và nhạc video = VideoFileClip("heatmap_animation.mp4") audio = AudioFileClip("legacy-of-the-century-background-cinematic-music-for-video-46-second-319542.mp3").set_duration(video.duration) final = video.set_audio(audio) final.write_videofile("heatmap_with_music.mp4", codec="libx264", audio_codec="aac", ffmpeg_params=["-pix_fmt", "yuv420p"]) return "heatmap_with_music.mp4" with gr.Blocks() as demo: gr.Markdown("""# 🎥 Visualizing How Multimodal Models Think - This tool generates a video to **visualize how a multimodal model (image + text)** attends to different parts of an image while generating text. 📌 What it does: - Takes an input image and a text prompt. - Shows how the model’s attention shifts on the image for each generated token. - Helps explain the model’s behavior and decision-making. 🖼️ Video layout (per frame): Each frame in the video includes: 1. 🔥 **Heatmap over image**: Shows which area the model focuses on. 2. 📝 **Generated text**: With old context, current token highlighted. 3. 📊 **Token prediction table**: Shows the model’s top next-token guesses. """) with gr.Row(): with gr.Column(): image = gr.Image(label="Upload your image", type = 'filepath') prompt = gr.Textbox(label="Describe your prompt", value="List all the text." ) max_tokens = gr.Slider(label="Max token output (⚠️ Choose <100 for faster response)", minimum=1, maximum=256, value=50) btn = gr.Button("Inference") video = gr.Video(label="Visualization Video") btn.click(fn=generate_video, inputs=[image, prompt, max_tokens], outputs=video) if __name__ == "__main__": demo.launch()