Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
import torchaudio | |
import tempfile | |
import numpy as np | |
from nemo.collections.tts.models import FastPitchModel | |
from nemo.collections.tts.models import HifiGanModel | |
from nemo.collections.tts.models import MixerTTSModel | |
from transformers import pipeline | |
Audio(output["audio"], rate=output["sampling_rate"]) | |
# spec_generator_2 = MixerTTSModel.from_pretrained("tts_en_lj_mixerttsx") | |
# model1 = HifiGanModel.from_pretrained(model_name="tts_en_lj_hifigan_ft_mixerttsx") | |
spec_generator = FastPitchModel.from_pretrained("tts_en_fastpitch_multispeaker") | |
spec_generator.eval() | |
voc_model = HifiGanModel.from_pretrained(model_name="tts_en_hifitts_hifigan_ft_fastpitch") | |
voc_model.eval() | |
pipe = pipeline("text-to-speech", model="suno/bark-small") | |
def greet(name): | |
return "Hello " + name + "!!" | |
def generate_tts(text: str, speaker: int = 0): | |
sr = 44100 | |
# parsed = spec_generator.parse(text) | |
# spectrogram = spec_generator.generate_spectrogram(tokens=parsed, speaker=speaker) | |
# audio = voc_model.convert_spectrogram_to_audio(spec=spectrogram) | |
output = pipe(text) | |
# with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp: | |
# torchaudio.save(fp.name, audio.to('cpu'), sample_rate=sr) | |
# return fp.name | |
return (output["sampling_rate"], output["audio"]) | |
def run(): | |
demo = gr.Interface( | |
fn=generate_tts, | |
inputs=[gr.Textbox(value="This is a test.", label="Text to Synthesize"), | |
gr.Slider(0, 10, step=1, label="Speaker")], | |
outputs=gr.Audio(label="Output", type="numpy"), | |
) | |
demo.launch(server_name="0.0.0.0", server_port=7860) | |
if __name__ == "__main__": | |
run() |