Spaces:
Runtime error
Runtime error
Commit
·
f690a5a
1
Parent(s):
09e6eb0
update tts
Browse files
app.py
CHANGED
@@ -8,6 +8,12 @@ from nemo.collections.tts.models import FastPitchModel
|
|
8 |
from nemo.collections.tts.models import HifiGanModel
|
9 |
from nemo.collections.tts.models import MixerTTSModel
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
# spec_generator_2 = MixerTTSModel.from_pretrained("tts_en_lj_mixerttsx")
|
12 |
# model1 = HifiGanModel.from_pretrained(model_name="tts_en_lj_hifigan_ft_mixerttsx")
|
13 |
|
@@ -16,20 +22,23 @@ spec_generator.eval()
|
|
16 |
voc_model = HifiGanModel.from_pretrained(model_name="tts_en_hifitts_hifigan_ft_fastpitch")
|
17 |
voc_model.eval()
|
18 |
|
|
|
|
|
19 |
def greet(name):
|
20 |
return "Hello " + name + "!!"
|
21 |
|
22 |
def generate_tts(text: str, speaker: int = 0):
|
23 |
sr = 44100
|
24 |
-
parsed = spec_generator.parse(text)
|
25 |
-
spectrogram = spec_generator.generate_spectrogram(tokens=parsed, speaker=speaker)
|
26 |
-
audio = voc_model.convert_spectrogram_to_audio(spec=spectrogram)
|
|
|
27 |
|
28 |
# with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp:
|
29 |
# torchaudio.save(fp.name, audio.to('cpu'), sample_rate=sr)
|
30 |
|
31 |
# return fp.name
|
32 |
-
return (
|
33 |
|
34 |
def run():
|
35 |
demo = gr.Interface(
|
|
|
8 |
from nemo.collections.tts.models import HifiGanModel
|
9 |
from nemo.collections.tts.models import MixerTTSModel
|
10 |
|
11 |
+
from transformers import pipeline
|
12 |
+
|
13 |
+
|
14 |
+
Audio(output["audio"], rate=output["sampling_rate"])
|
15 |
+
|
16 |
+
|
17 |
# spec_generator_2 = MixerTTSModel.from_pretrained("tts_en_lj_mixerttsx")
|
18 |
# model1 = HifiGanModel.from_pretrained(model_name="tts_en_lj_hifigan_ft_mixerttsx")
|
19 |
|
|
|
22 |
voc_model = HifiGanModel.from_pretrained(model_name="tts_en_hifitts_hifigan_ft_fastpitch")
|
23 |
voc_model.eval()
|
24 |
|
25 |
+
pipe = pipeline("text-to-speech", model="suno/bark-small")
|
26 |
+
|
27 |
def greet(name):
|
28 |
return "Hello " + name + "!!"
|
29 |
|
30 |
def generate_tts(text: str, speaker: int = 0):
|
31 |
sr = 44100
|
32 |
+
# parsed = spec_generator.parse(text)
|
33 |
+
# spectrogram = spec_generator.generate_spectrogram(tokens=parsed, speaker=speaker)
|
34 |
+
# audio = voc_model.convert_spectrogram_to_audio(spec=spectrogram)
|
35 |
+
output = pipe(text)
|
36 |
|
37 |
# with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp:
|
38 |
# torchaudio.save(fp.name, audio.to('cpu'), sample_rate=sr)
|
39 |
|
40 |
# return fp.name
|
41 |
+
return (output["sampling_rate"], output["audio"])
|
42 |
|
43 |
def run():
|
44 |
demo = gr.Interface(
|