Spaces:
Runtime error
Runtime error
File size: 1,600 Bytes
b996e0b eb3a8c0 2230bd8 e6e581b eb3a8c0 8bc1b1b a6dfc58 f690a5a a6dfc58 8bc1b1b b996e0b 7c1cb1d 7b0aa8e e6e581b 7c1cb1d 7b0aa8e 1da77a0 a6dfc58 e3064ab 09e6eb0 7c1cb1d 1da77a0 2230bd8 1da77a0 7c1cb1d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
import gradio as gr
import torch
import torchaudio
import tempfile
import numpy as np
from nemo.collections.tts.models import FastPitchModel
from nemo.collections.tts.models import HifiGanModel
from nemo.collections.tts.models import MixerTTSModel
from transformers import pipeline
# spec_generator_2 = MixerTTSModel.from_pretrained("tts_en_lj_mixerttsx")
# model1 = HifiGanModel.from_pretrained(model_name="tts_en_lj_hifigan_ft_mixerttsx")
def greet(name):
return "Hello " + name + "!!"
def run(spec_generator, voc_model, pipe):
def generate_tts(text: str, speaker: int = 0):
sr = 44100
parsed = spec_generator.parse(text)
spectrogram = spec_generator.generate_spectrogram(tokens=parsed, speaker=speaker)
audio = voc_model.convert_spectrogram_to_audio(spec=spectrogram)
return gr.Audio.update(sr, audio.squeeze(0).cpu().numpy())
demo = gr.Interface(
fn=generate_tts,
inputs=[gr.Textbox(value="This is a test.", label="Text to Synthesize"),
gr.Slider(0, 10, step=1, label="Speaker")],
outputs=gr.Audio(label="Output", type="numpy"),
allow_flagging=False,
)
demo.launch(server_name="0.0.0.0", server_port=7860)
if __name__ == "__main__":
spec_generator = FastPitchModel.from_pretrained("tts_en_fastpitch_multispeaker")
spec_generator.eval()
voc_model = HifiGanModel.from_pretrained(model_name="tts_en_hifitts_hifigan_ft_fastpitch")
voc_model.eval()
pipe = pipeline("text-to-speech", model="suno/bark-small")
run(spec_generator, voc_model, pipe) |