LSM / src /utils /visualization_utils.py
kairunwen's picture
Update Code
57746f1
import sys
import os
import numpy as np
import scipy.interpolate
import PIL
import torch
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
import moviepy.editor as mpy
sys.path.append('submodules/mast3r/dust3r')
from dust3r.utils.image import heif_support_enabled, exif_transpose, _resize_pil_image, ImgNorm
from dust3r.image_pairs import make_pairs
from dust3r.inference import inference
from dust3r.cloud_opt import global_aligner, GlobalAlignerMode
sys.path.append('.')
from src.utils.cuda_splatting import render, DummyPipeline
from src.utils.gaussian_model import GaussianModel
from src.utils.camera_utils import get_scaled_camera
from src.losses import merge_and_split_predictions
from src.utils.camera_utils import move_c2w_along_z
from einops import rearrange
LABELS = ['wall', 'floor', 'ceiling', 'chair', 'table', 'sofa', 'bed', 'other']
NUM_LABELS = len(LABELS) + 1
PALLETE = plt.cm.get_cmap('tab10', NUM_LABELS)
COLORS_LIST = [PALLETE(i)[:3] for i in range(NUM_LABELS)]
COLORS = torch.tensor(COLORS_LIST, dtype=torch.float32)
def load_images(folder_or_list, size, square_ok=False, verbose=True, save_dir=None):
""" open and convert all images in a list or folder to proper input format for DUSt3R
"""
if isinstance(folder_or_list, str):
if verbose:
print(f'>> Loading images from {folder_or_list}')
root, folder_content = folder_or_list, sorted(os.listdir(folder_or_list))
elif isinstance(folder_or_list, list):
if verbose:
print(f'>> Loading a list of {len(folder_or_list)} images')
root, folder_content = '', folder_or_list
else:
raise ValueError(f'bad {folder_or_list=} ({type(folder_or_list)})')
supported_images_extensions = ['.jpg', '.jpeg', '.png']
if heif_support_enabled:
supported_images_extensions += ['.heic', '.heif']
supported_images_extensions = tuple(supported_images_extensions)
imgs = []
for path in folder_content:
if not path.lower().endswith(supported_images_extensions):
continue
img = exif_transpose(PIL.Image.open(os.path.join(root, path))).convert('RGB')
W1, H1 = img.size
if size == 224:
# resize short side to 224 (then crop)
img = _resize_pil_image(img, round(size * max(W1/H1, H1/W1)))
else:
# resize long side to 512
img = _resize_pil_image(img, size)
W, H = img.size
cx, cy = W//2, H//2
if size == 224:
half = min(cx, cy)
img = img.crop((cx-half, cy-half, cx+half, cy+half))
else:
halfw, halfh = ((2*cx)//32)*16, ((2*cy)//32)*16
if not (square_ok) and W == H:
halfh = 3*halfw/4
img = img.crop((cx-halfw, cy-halfh, cx+halfw, cy+halfh))
W2, H2 = img.size
if verbose:
print(f' - adding {path} with resolution {W1}x{H1} --> {W2}x{H2}')
# Save the processed image if save_dir is provided
if save_dir:
os.makedirs(save_dir, exist_ok=True)
save_path = os.path.join(save_dir, f"processed_{len(imgs):03d}.png")
img.save(save_path)
if verbose:
print(f' - saved processed image to {save_path}')
imgs.append(dict(img=ImgNorm(img)[None], true_shape=np.int32(
[img.size[::-1]]), idx=len(imgs), instance=str(len(imgs))))
assert imgs, 'no images foud at '+root
if verbose:
print(f' (Found {len(imgs)} images)')
return imgs
def normalize(x):
"""Normalization helper function."""
return x / np.linalg.norm(x)
def viewmatrix(lookdir, up, position):
"""Construct lookat view matrix."""
vec2 = normalize(lookdir)
vec0 = normalize(np.cross(up, vec2))
vec1 = normalize(np.cross(vec2, vec0))
m = np.stack([vec0, vec1, vec2, position], axis=1)
return m
def poses_to_points(poses, dist):
"""Converts from pose matrices to (position, lookat, up) format."""
pos = poses[:, :3, -1]
lookat = poses[:, :3, -1] - dist * poses[:, :3, 2]
up = poses[:, :3, -1] + dist * poses[:, :3, 1]
return np.stack([pos, lookat, up], 1)
def points_to_poses(points):
"""Converts from (position, lookat, up) format to pose matrices."""
return np.array([viewmatrix(p - l, u - p, p) for p, l, u in points])
def interp(points, n, k, s):
"""Runs multidimensional B-spline interpolation on the input points."""
sh = points.shape
pts = np.reshape(points, (sh[0], -1))
k = min(k, sh[0] - 1)
tck, _ = scipy.interpolate.splprep(pts.T, k=k, s=s)
u = np.linspace(0, 1, n, endpoint=False)
new_points = np.array(scipy.interpolate.splev(u, tck))
new_points = np.reshape(new_points.T, (n, sh[1], sh[2]))
return new_points
def generate_interpolated_path(poses, n_interp, spline_degree=5,
smoothness=.03, rot_weight=.1):
"""Creates a smooth spline path between input keyframe camera poses.
Spline is calculated with poses in format (position, lookat-point, up-point).
Args:
poses: (n, 3, 4) array of input pose keyframes.
n_interp: returned path will have n_interp * (n - 1) total poses.
spline_degree: polynomial degree of B-spline.
smoothness: parameter for spline smoothing, 0 forces exact interpolation.
rot_weight: relative weighting of rotation/translation in spline solve.
Returns:
Array of new camera poses with shape (n_interp * (n - 1), 3, 4).
"""
points = poses_to_points(poses, dist=rot_weight)
new_points = interp(points,
n_interp * (points.shape[0] - 1),
k=spline_degree,
s=smoothness)
return points_to_poses(new_points)
def batch_visualize_tensor_global_pca(tensor_batch, num_components=3):
B, C, H, W = tensor_batch.shape
tensor_flat_all = tensor_batch.reshape(B, C, -1).permute(1, 0, 2).reshape(C, -1).T
tensor_flat_all_np = tensor_flat_all.cpu().numpy()
scaler = StandardScaler()
tensor_flat_all_np = scaler.fit_transform(tensor_flat_all_np)
pca = PCA(n_components=num_components)
tensor_reduced_all_np = pca.fit_transform(tensor_flat_all_np)
tensor_reduced_all = torch.tensor(tensor_reduced_all_np, dtype=tensor_batch.dtype).T.reshape(num_components, B, H * W).permute(1, 0, 2)
output_tensor = torch.zeros((B, 3, H, W))
for i in range(B):
tensor_reduced = tensor_reduced_all[i].reshape(num_components, H, W)
tensor_reduced -= tensor_reduced.min()
tensor_reduced /= tensor_reduced.max()
output_tensor[i] = tensor_reduced[:3]
return output_tensor
def depth_to_colormap(depth_tensor, colormap='jet'):
B, _, _, _ = depth_tensor.shape
depth_tensor = (depth_tensor - depth_tensor.min()) / (depth_tensor.max() - depth_tensor.min())
depth_np = depth_tensor.squeeze(1).cpu().numpy()
cmap = plt.get_cmap(colormap)
colored_images = []
for i in range(B):
colored_image = cmap(depth_np[i])
colored_images.append(colored_image[..., :3])
colored_tensor = torch.tensor(np.array(colored_images), dtype=torch.float32).permute(0, 3, 1, 2)
return colored_tensor
def save_video(frames, video_path, fps=24):
clips = [mpy.ImageClip(frame).set_duration(1/fps) for frame in frames]
video = mpy.concatenate_videoclips(clips, method="compose")
video.write_videofile(video_path, fps=fps)
def tensors_to_videos(all_images, all_depth_vis, all_fmap_vis, all_sems_vis, video_dir='videos', fps=24):
B, C, H, W = all_images.shape
assert all_depth_vis.shape == (B, C, H, W)
assert all_fmap_vis.shape == (B, C, H, W)
assert all_sems_vis.shape == (B, C, H, W)
os.makedirs(video_dir, exist_ok=True)
all_images = (all_images.permute(0, 2, 3, 1).cpu().numpy() * 255).astype(np.uint8)
all_depth_vis = (all_depth_vis.permute(0, 2, 3, 1).cpu().numpy() * 255).astype(np.uint8)
all_fmap_vis = (all_fmap_vis.permute(0, 2, 3, 1).cpu().numpy() * 255).astype(np.uint8)
all_sems_vis = (all_sems_vis.permute(0, 2, 3, 1).cpu().numpy() * 255).astype(np.uint8)
save_video(all_images, os.path.join(video_dir, 'output_images_video.mp4'), fps=fps)
save_video(all_depth_vis, os.path.join(video_dir, 'output_depth_video.mp4'), fps=fps)
save_video(all_fmap_vis, os.path.join(video_dir, 'output_fmap_video.mp4'), fps=fps)
# save_video(all_sems_vis, os.path.join(video_dir, 'output_sems_video.mp4'), fps=fps)
print(f'Videos saved to {video_dir}')
def transfer_images_to_device(images, device):
"""
Transfer the loaded images to the specified device.
Args:
images (list): List of dictionaries containing image data.
device (str or torch.device): The device to transfer the data to.
Returns:
list: List of dictionaries with image data transferred to the specified device.
"""
transferred_images = []
for img_dict in images:
transferred_dict = {
'img': img_dict['img'].to(device),
'true_shape': torch.tensor(img_dict['true_shape'], device=device),
'idx': img_dict['idx'],
'instance': img_dict['instance']
}
transferred_images.append(transferred_dict)
return transferred_images
def render_camera_path(video_poses, camera_params, gaussians, model, device, pipeline, bg_color, image_shape):
"""渲染相机路径的帮助函数
Args:
video_poses: 相机位姿列表
camera_params: 包含extrinsics和intrinsics的相机参数
gaussians: 高斯模型
model: 特征提取模型
device: 计算设备
pipeline: 渲染管线
bg_color: 背景颜色
image_shape: 图像尺寸
Returns:
rendered_images: 渲染的图像
rendered_feats: 渲染的特征图
rendered_depths: 渲染的深度图
rendered_sems: 渲染的语义图
"""
extrinsics, intrinsics = camera_params
rendered_images = []
rendered_feats = []
rendered_depths = []
rendered_sems = []
for i in range(len(video_poses)):
target_extrinsics = torch.zeros(4, 4).to(device)
target_extrinsics[3, 3] = 1.0
target_extrinsics[:3, :4] = torch.tensor(video_poses[i], device=device)
camera = get_scaled_camera(extrinsics[0], target_extrinsics, intrinsics[0], 1.0, image_shape)
rendered_output = render(camera, gaussians, pipeline, bg_color)
rendered_images.append(rendered_output['render'])
# 处理特征图
feature_map = rendered_output['feature_map']
feature_map = model.feature_expansion(feature_map[None, ...])
# 处理语义图
logits = model.lseg_feature_extractor.decode_feature(feature_map, labelset=LABELS)
semantic_map = torch.argmax(logits, dim=1) + 1
mask = COLORS[semantic_map.cpu()]
mask = rearrange(mask, 'b h w c -> b c h w')
rendered_sems.append(mask.squeeze(0))
# 降采样并上采样特征图
feature_map = feature_map[:, ::16, ...]
feature_map = torch.nn.functional.interpolate(feature_map, scale_factor=2, mode='bilinear', align_corners=True)
rendered_feats.append(feature_map[0])
del feature_map
rendered_depths.append(rendered_output['depth'])
# 堆叠并处理结果
rendered_images = torch.clamp(torch.stack(rendered_images, dim=0), 0, 1)
rendered_feats = torch.stack(rendered_feats, dim=0)
rendered_depths = torch.stack(rendered_depths, dim=0)
rendered_sems = torch.stack(rendered_sems, dim=0)
return rendered_images, rendered_feats, rendered_depths, rendered_sems
@torch.no_grad()
def render_video_from_file(file_list, model, output_path, device='cuda', resolution=224, n_interp=90, fps=30, path_type='default'):
# 1. load images
images = load_images(file_list, resolution, save_dir=os.path.join(output_path, 'processed_images'))
images = transfer_images_to_device(images, device) # Transfer images to the specified device
image_shape = images[0]['true_shape'][0]
# 2. get camera pose
pairs = make_pairs(images, prefilter=None, symmetrize=True)
output = inference(pairs, model.mast3r, device, batch_size=1)
mode = GlobalAlignerMode.PairViewer
scene = global_aligner(output, device=device, mode=mode)
extrinsics = scene.get_im_poses()
intrinsics = scene.get_intrinsics()
video_poses = generate_interpolated_path(extrinsics[:, :3, :].cpu().numpy(), n_interp=n_interp) # extrinsics: (b, 3, 4)
# 3. get gaussians
pred1, pred2 = model(*images)
pred = merge_and_split_predictions(pred1, pred2)
gaussians = GaussianModel.from_predictions(pred[0], sh_degree=3)
# 4. 渲染原始视角
pipeline = DummyPipeline()
bg_color = torch.tensor([0.0, 0.0, 0.0]).to(device)
camera_params = (extrinsics, intrinsics)
rendered_images, rendered_feats, rendered_depths, rendered_sems = render_camera_path(
video_poses, camera_params, gaussians, model, device, pipeline, bg_color, image_shape)
# 5. 可视化
all_fmap_vis = batch_visualize_tensor_global_pca(rendered_feats)
all_depth_vis = depth_to_colormap(rendered_depths)
all_sems_vis = rendered_sems
# 6. 保存视频和高斯点云
tensors_to_videos(rendered_images, all_depth_vis, all_fmap_vis, all_sems_vis, output_path, fps=fps)
gaussians.save_ply(os.path.join(output_path, 'gaussians.ply'))
# 7. 渲染移动后的视角
moved_extrinsics = move_c2w_along_z(extrinsics, 2.0)
moved_video_poses = generate_interpolated_path(moved_extrinsics[:, :3, :].cpu().numpy(), n_interp=n_interp)
camera_params = (extrinsics, intrinsics)
moved_rendered_images, moved_rendered_feats, moved_rendered_depths, moved_rendered_sems = render_camera_path(
moved_video_poses, camera_params, gaussians, model, device, pipeline, bg_color, image_shape)
# 8. 可视化和保存移动后的结果
moved_all_fmap_vis = batch_visualize_tensor_global_pca(moved_rendered_feats)
moved_all_depth_vis = depth_to_colormap(moved_rendered_depths)
moved_all_sems_vis = moved_rendered_sems
moved_output_path = os.path.join(output_path, 'moved')
os.makedirs(moved_output_path, exist_ok=True)
tensors_to_videos(moved_rendered_images, moved_all_depth_vis, moved_all_fmap_vis, moved_all_sems_vis,
moved_output_path, fps=fps)