File size: 14,634 Bytes
57746f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
import sys
import os
import numpy as np
import scipy.interpolate
import PIL
import torch
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
import moviepy.editor as mpy

sys.path.append('submodules/mast3r/dust3r')
from dust3r.utils.image import heif_support_enabled, exif_transpose, _resize_pil_image, ImgNorm
from dust3r.image_pairs import make_pairs
from dust3r.inference import inference
from dust3r.cloud_opt import global_aligner, GlobalAlignerMode

sys.path.append('.')
from src.utils.cuda_splatting import render, DummyPipeline
from src.utils.gaussian_model import GaussianModel
from src.utils.camera_utils import get_scaled_camera
from src.losses import merge_and_split_predictions
from src.utils.camera_utils import move_c2w_along_z

from einops import rearrange
LABELS = ['wall', 'floor', 'ceiling', 'chair', 'table', 'sofa', 'bed', 'other']
NUM_LABELS = len(LABELS) + 1
PALLETE = plt.cm.get_cmap('tab10', NUM_LABELS)
COLORS_LIST = [PALLETE(i)[:3] for i in range(NUM_LABELS)]
COLORS = torch.tensor(COLORS_LIST, dtype=torch.float32)

def load_images(folder_or_list, size, square_ok=False, verbose=True, save_dir=None):
    """ open and convert all images in a list or folder to proper input format for DUSt3R
    """
    if isinstance(folder_or_list, str):
        if verbose:
            print(f'>> Loading images from {folder_or_list}')
        root, folder_content = folder_or_list, sorted(os.listdir(folder_or_list))

    elif isinstance(folder_or_list, list):
        if verbose:
            print(f'>> Loading a list of {len(folder_or_list)} images')
        root, folder_content = '', folder_or_list

    else:
        raise ValueError(f'bad {folder_or_list=} ({type(folder_or_list)})')

    supported_images_extensions = ['.jpg', '.jpeg', '.png']
    if heif_support_enabled:
        supported_images_extensions += ['.heic', '.heif']
    supported_images_extensions = tuple(supported_images_extensions)

    imgs = []
    for path in folder_content:
        if not path.lower().endswith(supported_images_extensions):
            continue
        img = exif_transpose(PIL.Image.open(os.path.join(root, path))).convert('RGB')
        W1, H1 = img.size
        if size == 224:
            # resize short side to 224 (then crop)
            img = _resize_pil_image(img, round(size * max(W1/H1, H1/W1)))
        else:
            # resize long side to 512
            img = _resize_pil_image(img, size)
        W, H = img.size
        cx, cy = W//2, H//2
        if size == 224:
            half = min(cx, cy)
            img = img.crop((cx-half, cy-half, cx+half, cy+half))
        else:
            halfw, halfh = ((2*cx)//32)*16, ((2*cy)//32)*16
            if not (square_ok) and W == H:
                halfh = 3*halfw/4
            img = img.crop((cx-halfw, cy-halfh, cx+halfw, cy+halfh))

        W2, H2 = img.size
        if verbose:
            print(f' - adding {path} with resolution {W1}x{H1} --> {W2}x{H2}')
        
        # Save the processed image if save_dir is provided
        if save_dir:
            os.makedirs(save_dir, exist_ok=True)
            save_path = os.path.join(save_dir, f"processed_{len(imgs):03d}.png")
            img.save(save_path)
            if verbose:
                print(f' - saved processed image to {save_path}')
        
        imgs.append(dict(img=ImgNorm(img)[None], true_shape=np.int32(
            [img.size[::-1]]), idx=len(imgs), instance=str(len(imgs))))

    assert imgs, 'no images foud at '+root
    if verbose:
        print(f' (Found {len(imgs)} images)')
    return imgs

def normalize(x):
    """Normalization helper function."""
    return x / np.linalg.norm(x)

def viewmatrix(lookdir, up, position):
    """Construct lookat view matrix."""
    vec2 = normalize(lookdir)
    vec0 = normalize(np.cross(up, vec2))
    vec1 = normalize(np.cross(vec2, vec0))
    m = np.stack([vec0, vec1, vec2, position], axis=1)
    return m

def poses_to_points(poses, dist):
    """Converts from pose matrices to (position, lookat, up) format."""
    pos = poses[:, :3, -1]
    lookat = poses[:, :3, -1] - dist * poses[:, :3, 2]
    up = poses[:, :3, -1] + dist * poses[:, :3, 1]
    return np.stack([pos, lookat, up], 1)

def points_to_poses(points):
    """Converts from (position, lookat, up) format to pose matrices."""
    return np.array([viewmatrix(p - l, u - p, p) for p, l, u in points])

def interp(points, n, k, s):
    """Runs multidimensional B-spline interpolation on the input points."""
    sh = points.shape
    pts = np.reshape(points, (sh[0], -1))
    k = min(k, sh[0] - 1)
    tck, _ = scipy.interpolate.splprep(pts.T, k=k, s=s)
    u = np.linspace(0, 1, n, endpoint=False)
    new_points = np.array(scipy.interpolate.splev(u, tck))
    new_points = np.reshape(new_points.T, (n, sh[1], sh[2]))
    return new_points

def generate_interpolated_path(poses, n_interp, spline_degree=5,
                               smoothness=.03, rot_weight=.1):
    """Creates a smooth spline path between input keyframe camera poses.

  Spline is calculated with poses in format (position, lookat-point, up-point).

  Args:
    poses: (n, 3, 4) array of input pose keyframes.
    n_interp: returned path will have n_interp * (n - 1) total poses.
    spline_degree: polynomial degree of B-spline.
    smoothness: parameter for spline smoothing, 0 forces exact interpolation.
    rot_weight: relative weighting of rotation/translation in spline solve.

  Returns:
    Array of new camera poses with shape (n_interp * (n - 1), 3, 4).
  """

    points = poses_to_points(poses, dist=rot_weight)
    new_points = interp(points,
                        n_interp * (points.shape[0] - 1),
                        k=spline_degree,
                        s=smoothness)
    return points_to_poses(new_points) 

def batch_visualize_tensor_global_pca(tensor_batch, num_components=3):
    B, C, H, W = tensor_batch.shape

    tensor_flat_all = tensor_batch.reshape(B, C, -1).permute(1, 0, 2).reshape(C, -1).T

    tensor_flat_all_np = tensor_flat_all.cpu().numpy()

    scaler = StandardScaler()
    tensor_flat_all_np = scaler.fit_transform(tensor_flat_all_np)

    pca = PCA(n_components=num_components)
    tensor_reduced_all_np = pca.fit_transform(tensor_flat_all_np)

    tensor_reduced_all = torch.tensor(tensor_reduced_all_np, dtype=tensor_batch.dtype).T.reshape(num_components, B, H * W).permute(1, 0, 2)

    output_tensor = torch.zeros((B, 3, H, W))

    for i in range(B):
        tensor_reduced = tensor_reduced_all[i].reshape(num_components, H, W)
        tensor_reduced -= tensor_reduced.min()
        tensor_reduced /= tensor_reduced.max()
        output_tensor[i] = tensor_reduced[:3]

    return output_tensor

def depth_to_colormap(depth_tensor, colormap='jet'):
    B, _, _, _ = depth_tensor.shape

    depth_tensor = (depth_tensor - depth_tensor.min()) / (depth_tensor.max() - depth_tensor.min())

    depth_np = depth_tensor.squeeze(1).cpu().numpy()

    cmap = plt.get_cmap(colormap)
    colored_images = []

    for i in range(B):
        colored_image = cmap(depth_np[i])
        colored_images.append(colored_image[..., :3])

    colored_tensor = torch.tensor(np.array(colored_images), dtype=torch.float32).permute(0, 3, 1, 2)
    
    return colored_tensor

def save_video(frames, video_path, fps=24):
    clips = [mpy.ImageClip(frame).set_duration(1/fps) for frame in frames]
    video = mpy.concatenate_videoclips(clips, method="compose")
    video.write_videofile(video_path, fps=fps)

def tensors_to_videos(all_images, all_depth_vis, all_fmap_vis, all_sems_vis, video_dir='videos', fps=24):
    B, C, H, W = all_images.shape
    assert all_depth_vis.shape == (B, C, H, W)
    assert all_fmap_vis.shape == (B, C, H, W)
    assert all_sems_vis.shape == (B, C, H, W)
    os.makedirs(video_dir, exist_ok=True)

    all_images = (all_images.permute(0, 2, 3, 1).cpu().numpy() * 255).astype(np.uint8)
    all_depth_vis = (all_depth_vis.permute(0, 2, 3, 1).cpu().numpy() * 255).astype(np.uint8)
    all_fmap_vis = (all_fmap_vis.permute(0, 2, 3, 1).cpu().numpy() * 255).astype(np.uint8)
    all_sems_vis = (all_sems_vis.permute(0, 2, 3, 1).cpu().numpy() * 255).astype(np.uint8)

    save_video(all_images, os.path.join(video_dir, 'output_images_video.mp4'), fps=fps)
    save_video(all_depth_vis, os.path.join(video_dir, 'output_depth_video.mp4'), fps=fps)
    save_video(all_fmap_vis, os.path.join(video_dir, 'output_fmap_video.mp4'), fps=fps)
    # save_video(all_sems_vis, os.path.join(video_dir, 'output_sems_video.mp4'), fps=fps)

    print(f'Videos saved to {video_dir}')

def transfer_images_to_device(images, device):
    """
    Transfer the loaded images to the specified device.
    
    Args:
        images (list): List of dictionaries containing image data.
        device (str or torch.device): The device to transfer the data to.
    
    Returns:
        list: List of dictionaries with image data transferred to the specified device.
    """
    transferred_images = []
    for img_dict in images:
        transferred_dict = {
            'img': img_dict['img'].to(device),
            'true_shape': torch.tensor(img_dict['true_shape'], device=device),
            'idx': img_dict['idx'],
            'instance': img_dict['instance']
        }
        transferred_images.append(transferred_dict)
    return transferred_images

def render_camera_path(video_poses, camera_params, gaussians, model, device, pipeline, bg_color, image_shape):
    """渲染相机路径的帮助函数
    
    Args:
        video_poses: 相机位姿列表
        camera_params: 包含extrinsics和intrinsics的相机参数
        gaussians: 高斯模型
        model: 特征提取模型
        device: 计算设备
        pipeline: 渲染管线
        bg_color: 背景颜色
        image_shape: 图像尺寸
    
    Returns:
        rendered_images: 渲染的图像
        rendered_feats: 渲染的特征图
        rendered_depths: 渲染的深度图
        rendered_sems: 渲染的语义图
    """
    extrinsics, intrinsics = camera_params
    rendered_images = []
    rendered_feats = []
    rendered_depths = []
    rendered_sems = []
    
    for i in range(len(video_poses)):
        target_extrinsics = torch.zeros(4, 4).to(device)
        target_extrinsics[3, 3] = 1.0
        target_extrinsics[:3, :4] = torch.tensor(video_poses[i], device=device)
        camera = get_scaled_camera(extrinsics[0], target_extrinsics, intrinsics[0], 1.0, image_shape)
        
        rendered_output = render(camera, gaussians, pipeline, bg_color)
        rendered_images.append(rendered_output['render'])
        
        # 处理特征图
        feature_map = rendered_output['feature_map']
        feature_map = model.feature_expansion(feature_map[None, ...])
        
        # 处理语义图
        logits = model.lseg_feature_extractor.decode_feature(feature_map, labelset=LABELS)
        semantic_map = torch.argmax(logits, dim=1) + 1
        mask = COLORS[semantic_map.cpu()]
        mask = rearrange(mask, 'b h w c -> b c h w')
        rendered_sems.append(mask.squeeze(0))
            
        # 降采样并上采样特征图
        feature_map = feature_map[:, ::16, ...]
        feature_map = torch.nn.functional.interpolate(feature_map, scale_factor=2, mode='bilinear', align_corners=True)
        rendered_feats.append(feature_map[0])
        del feature_map
        
        rendered_depths.append(rendered_output['depth'])

    # 堆叠并处理结果
    rendered_images = torch.clamp(torch.stack(rendered_images, dim=0), 0, 1)
    rendered_feats = torch.stack(rendered_feats, dim=0)
    rendered_depths = torch.stack(rendered_depths, dim=0)
    rendered_sems = torch.stack(rendered_sems, dim=0)
        
    return rendered_images, rendered_feats, rendered_depths, rendered_sems

@torch.no_grad()
def render_video_from_file(file_list, model, output_path, device='cuda', resolution=224, n_interp=90, fps=30, path_type='default'):
    # 1. load images
    images = load_images(file_list, resolution, save_dir=os.path.join(output_path, 'processed_images'))
    images = transfer_images_to_device(images, device)  # Transfer images to the specified device
    image_shape = images[0]['true_shape'][0]
    # 2. get camera pose    
    pairs = make_pairs(images, prefilter=None, symmetrize=True)
    output = inference(pairs, model.mast3r, device, batch_size=1)
    mode = GlobalAlignerMode.PairViewer
    scene = global_aligner(output, device=device, mode=mode)
    extrinsics = scene.get_im_poses()
    intrinsics = scene.get_intrinsics()
    video_poses = generate_interpolated_path(extrinsics[:, :3, :].cpu().numpy(), n_interp=n_interp) # extrinsics: (b, 3, 4)
    # 3. get gaussians
    pred1, pred2 = model(*images)
    pred = merge_and_split_predictions(pred1, pred2)
    gaussians = GaussianModel.from_predictions(pred[0], sh_degree=3)
    # 4. 渲染原始视角
    pipeline = DummyPipeline()
    bg_color = torch.tensor([0.0, 0.0, 0.0]).to(device)
    camera_params = (extrinsics, intrinsics)
    
    rendered_images, rendered_feats, rendered_depths, rendered_sems = render_camera_path(
        video_poses, camera_params, gaussians, model, device, pipeline, bg_color, image_shape)
    
    # 5. 可视化
    all_fmap_vis = batch_visualize_tensor_global_pca(rendered_feats)
    all_depth_vis = depth_to_colormap(rendered_depths)
    all_sems_vis = rendered_sems
    
    # 6. 保存视频和高斯点云
    tensors_to_videos(rendered_images, all_depth_vis, all_fmap_vis, all_sems_vis, output_path, fps=fps)
    gaussians.save_ply(os.path.join(output_path, 'gaussians.ply'))
    
    # 7. 渲染移动后的视角
    moved_extrinsics = move_c2w_along_z(extrinsics, 2.0)
    moved_video_poses = generate_interpolated_path(moved_extrinsics[:, :3, :].cpu().numpy(), n_interp=n_interp)
    camera_params = (extrinsics, intrinsics)
    
    moved_rendered_images, moved_rendered_feats, moved_rendered_depths, moved_rendered_sems = render_camera_path(
        moved_video_poses, camera_params, gaussians, model, device, pipeline, bg_color, image_shape)
    
    # 8. 可视化和保存移动后的结果
    moved_all_fmap_vis = batch_visualize_tensor_global_pca(moved_rendered_feats)
    moved_all_depth_vis = depth_to_colormap(moved_rendered_depths)
    moved_all_sems_vis = moved_rendered_sems
    
    moved_output_path = os.path.join(output_path, 'moved')
    os.makedirs(moved_output_path, exist_ok=True)
    tensors_to_videos(moved_rendered_images, moved_all_depth_vis, moved_all_fmap_vis, moved_all_sems_vis, 
                     moved_output_path, fps=fps)