googoo / app.py
johnpaulbin's picture
Update app.py
c2b521a verified
raw
history blame
4.55 kB
from huggingface_hub import hf_hub_download
from llama_cpp import Llama
import gradio as gr
import multiprocessing
import time
import os
# Model paths
def get_model_path(repo_id, filename):
print(f"Obtaining {filename}...")
return hf_hub_download(repo_id=repo_id, filename=filename)
# Get models
base_model_path = get_model_path(
"johnpaulbin/articulate-11-expspanish-base-merged-Q8_0-GGUF",
"articulate-11-expspanish-base-merged-q8_0.gguf"
)
adapter_path = get_model_path(
"johnpaulbin/articulate-V1-Q8_0-GGUF",
"articulate-V1-q8_0.gguf"
)
# Conservative CPU settings to avoid memory corruption
cpu_count = multiprocessing.cpu_count()
optimal_threads = max(1, min(8, cpu_count // 2)) # More conservative thread count
batch_size = 128 # Reduced batch size to prevent memory issues
print(f"Initializing model with {optimal_threads} threads and batch size {batch_size}...")
# Initialize model with safer parameters
start_time = time.time()
llm = Llama(
model_path=base_model_path,
lora_path=adapter_path,
n_ctx=512,
n_threads=optimal_threads,
n_batch=batch_size, # Smaller batch size for stability
use_mmap=True,
n_gpu_layers=0,
verbose=False
)
print(f"Model loaded in {time.time() - start_time:.2f} seconds")
# Simple translation cache (limited size)
translation_cache = {}
MAX_CACHE_SIZE = 50 # Reduced cache size
def translate(direction, text):
# Validate input
if not text or not text.strip():
return ""
text = text.strip()
# Simple cache lookup
cache_key = f"{direction}:{text}"
if cache_key in translation_cache:
return translation_cache[cache_key]
# Start timing
start_time = time.time()
# Language mapping
lang_map = {
"English to Spanish": ("ENGLISH", "SPANISH"),
"Spanish to English": ("SPANISH", "ENGLISH"),
"Korean to English": ("KOREAN", "ENGLISH"),
"English to Korean": ("ENGLISH", "KOREAN")
}
if direction not in lang_map:
return "Invalid direction"
source_lang, target_lang = lang_map[direction]
# Create prompt
prompt = f"[{source_lang}]{text}[{target_lang}]"
try:
# Generate translation with conservative settings
response = llm.create_completion(
prompt,
max_tokens=128, # Conservative token limit
temperature=0.0, # Deterministic
top_k=1, # Most likely token only
top_p=1.0, # No sampling
repeat_penalty=1.0,
stream=False
)
translation = response['choices'][0]['text'].strip()
# Manage cache size
if len(translation_cache) >= MAX_CACHE_SIZE:
# Remove oldest entry
translation_cache.pop(next(iter(translation_cache)))
translation_cache[cache_key] = translation
# Log performance
inference_time = time.time() - start_time
print(f"Translation completed in {inference_time:.3f}s")
return translation
except Exception as e:
print(f"Translation error: {e}")
return f"Error during translation: {str(e)}"
# Create Gradio interface
with gr.Blocks(title="Translation App") as iface:
gr.Markdown("## Fast Translation App")
with gr.Row():
direction = gr.Dropdown(
choices=["English to Spanish", "Spanish to English", "Korean to English", "English to Korean"],
label="Translation Direction",
value="English to Spanish"
)
with gr.Row():
input_text = gr.Textbox(lines=5, label="Input Text")
output_text = gr.Textbox(lines=5, label="Translation")
# Add translate button
translate_btn = gr.Button("Translate")
translate_btn.click(fn=translate, inputs=[direction, input_text], outputs=output_text)
# Examples WITHOUT caching (to avoid memory issues)
gr.Examples(
examples=[
["English to Spanish", "Hello, how are you today?"],
["Spanish to English", "Hola, ¿cómo estás hoy?"],
["English to Korean", "The weather is nice today."],
["Korean to English", "오늘 날씨가 좋습니다."]
],
inputs=[direction, input_text],
cache_examples=False # Disabled caching to prevent memory issues
)
# Launch with safer settings
iface.launch(debug=False, show_error=True)