Spaces:
Sleeping
Sleeping
File size: 14,105 Bytes
f06b197 7f36089 f06b197 b27a850 cedd7b9 7f36089 f06b197 b27a850 7f36089 b27a850 cedd7b9 f06b197 cedd7b9 b27a850 cedd7b9 b27a850 f06b197 b27a850 cedd7b9 7f36089 cedd7b9 f06b197 cedd7b9 f06b197 cedd7b9 f06b197 cedd7b9 f06b197 cedd7b9 f06b197 cedd7b9 f06b197 cedd7b9 f06b197 cedd7b9 f06b197 cedd7b9 f06b197 cedd7b9 f06b197 cedd7b9 f06b197 cedd7b9 f06b197 cedd7b9 b27a850 f06b197 cedd7b9 f06b197 cedd7b9 f06b197 cedd7b9 b27a850 f06b197 cedd7b9 f06b197 cedd7b9 f06b197 cedd7b9 f06b197 cedd7b9 c2b521a cedd7b9 f06b197 cedd7b9 f06b197 cedd7b9 f06b197 cedd7b9 f06b197 cedd7b9 f06b197 cedd7b9 f06b197 cedd7b9 f06b197 cedd7b9 f06b197 cedd7b9 f06b197 cedd7b9 f06b197 cedd7b9 f06b197 c2b521a f06b197 cedd7b9 f06b197 cedd7b9 f06b197 cedd7b9 f06b197 cedd7b9 7f36089 cedd7b9 f06b197 cedd7b9 f06b197 b27a850 cedd7b9 b27a850 cedd7b9 b27a850 cedd7b9 b27a850 cedd7b9 b27a850 f06b197 b27a850 cedd7b9 7f36089 f06b197 cedd7b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 |
import os
import time
import torch
import gradio as gr
from huggingface_hub import hf_hub_download
import threading
import queue
import multiprocessing
from functools import lru_cache
# First check if GPU is available for maximum speed
has_gpu = torch.cuda.is_available()
gpu_name = torch.cuda.get_device_name(0) if has_gpu else "No GPU"
print(f"GPU available: {has_gpu} - {gpu_name}")
# Download model files
def get_model_path(repo_id, filename):
print(f"Obtaining {filename}...")
return hf_hub_download(repo_id=repo_id, filename=filename)
base_model_path = get_model_path(
"johnpaulbin/articulate-11-expspanish-base-merged-Q8_0-GGUF",
"articulate-11-expspanish-base-merged-q8_0.gguf"
)
adapter_path = get_model_path(
"johnpaulbin/articulate-V1-Q8_0-GGUF",
"articulate-V1-q8_0.gguf"
)
# Optimize environment variables for CPU performance
os.environ["LLAMA_CUBLAS"] = "0" # Disable CUDA since we're CPU only
os.environ["LLAMA_CLBLAST"] = "0" # Disable OpenCL
os.environ["LLAMA_AVX"] = "1" # Enable AVX
os.environ["LLAMA_AVX2"] = "1" # Enable AVX2
os.environ["LLAMA_F16"] = "1" # Use FP16 where available
# Import the right module
from llama_cpp import Llama
print("Using CPU-optimized llama-cpp-python")
# Cache for translations
translation_cache = {}
MAX_CACHE_SIZE = 5000 # Increased cache size
# Common phrases for pre-loading
COMMON_PHRASES = {
"English to Spanish": [
"Hello", "Thank you", "Good morning", "How are you?", "What's your name?",
"I don't understand", "Please", "Sorry", "Yes", "No", "Where is"
],
"Spanish to English": [
"Hola", "Gracias", "Buenos dรญas", "ยฟCรณmo estรกs?", "ยฟCรณmo te llamas?",
"No entiendo", "Por favor", "Lo siento", "Sรญ", "No", "Dรณnde estรก"
],
"English to Korean": [
"Hello", "Thank you", "Good morning", "How are you?", "What's your name?",
"I don't understand", "Please", "Sorry", "Yes", "No", "Where is"
],
"Korean to English": [
"์๋
ํ์ธ์", "๊ฐ์ฌํฉ๋๋ค", "์ข์ ์์นจ์
๋๋ค", "์ด๋ป๊ฒ ์ง๋ด์ธ์?", "์ด๋ฆ์ด ๋ญ์์?",
"์ดํด๊ฐ ์ ๋ผ์", "์ ๋ฐ", "์ฃ์กํฉ๋๋ค", "๋ค", "์๋์", "์ด๋์ ์์ด์"
]
}
# Implement LRU cache for better performance
@lru_cache(maxsize=100)
def get_cached_translation(direction, text):
"""LRU cache for translations"""
return None # This gets bypassed when there's a cache hit
# Create a worker pool for parallel translation
class ModelWorkerPool:
def __init__(self, num_workers=1):
self.num_workers = num_workers
self.request_queue = queue.Queue()
self.response_queue = queue.Queue()
self.workers = []
self.initialized = False
# Create shared model instance with optimized settings
print("Initializing model with CPU optimizations...")
start_time = time.time()
# CPU optimization settings - use fewer threads for Q8 model
cpu_count = multiprocessing.cpu_count()
optimal_threads = max(1, min(4, cpu_count - 1)) # Use fewer threads for better performance
# Create a smaller context size for faster inference
self.model = Llama(
model_path=base_model_path,
lora_path=adapter_path,
n_ctx=256, # Reduced context for faster processing
n_threads=optimal_threads, # Optimized thread count
n_batch=512, # Reduced batch size for CPU
use_mmap=True, # Efficient memory mapping
n_gpu_layers=0, # CPU only
seed=42, # Consistent results
verbose=False, # Reduce overhead
rope_freq_base=10000, # Default attention parameters
rope_freq_scale=1.0,
)
print(f"Model loaded in {time.time() - start_time:.2f} seconds")
# Start worker threads
for i in range(num_workers):
worker = threading.Thread(target=self._worker_loop, daemon=True)
worker.start()
self.workers.append(worker)
self.initialized = True
# Pre-warm in background thread to not block startup
warming_thread = threading.Thread(target=self._prewarm_model, daemon=True)
warming_thread.start()
def _worker_loop(self):
"""Worker thread that processes translation requests"""
while True:
try:
request = self.request_queue.get()
if request is None: # Shutdown signal
break
direction, text, callback_id = request
# Check LRU cache first
cached = get_cached_translation(direction, text)
if cached is not None:
self.response_queue.put((callback_id, cached))
self.request_queue.task_done()
continue
# Check regular cache
cache_key = f"{direction}:{text}"
if cache_key in translation_cache:
result = translation_cache[cache_key]
else:
# Process new translation
result = self._process_translation(direction, text)
# Store in regular cache
if len(translation_cache) >= MAX_CACHE_SIZE:
translation_cache.pop(next(iter(translation_cache)))
translation_cache[cache_key] = result
self.response_queue.put((callback_id, result))
self.request_queue.task_done()
except Exception as e:
print(f"Error in worker thread: {e}")
self.response_queue.put((callback_id, f"Error: {str(e)}"))
self.request_queue.task_done()
def _prewarm_model(self):
"""Pre-compute common translations to warm up the model - minimal to save time"""
print("Pre-warming model with essential phrases (truncated for speed)...")
start = time.time()
# Just warm up with one phrase per direction to speed up startup
for direction, phrases in COMMON_PHRASES.items():
self._process_translation(direction, phrases[0])
# Only do the most common phrase to save startup time
print(f"Basic model pre-warming completed in {time.time() - start:.2f} seconds")
def _process_translation(self, direction, text):
"""Optimized translation function"""
# Skip empty inputs
if not text or not text.strip():
return ""
# Start timing for performance tracking
start_time = time.time()
# Map language directions
lang_map = {
"English to Spanish": ("ENGLISH", "SPANISH"),
"Spanish to English": ("SPANISH", "ENGLISH"),
"Korean to English": ("KOREAN", "ENGLISH"),
"English to Korean": ("ENGLISH", "KOREAN")
}
if direction not in lang_map:
return "Invalid direction"
source_lang, target_lang = lang_map[direction]
# Truncate long inputs for faster processing
max_input_length = 100 # Limit input length
if len(text) > max_input_length:
text = text[:max_input_length] + "..."
# Efficient prompt format
prompt = f"[{source_lang}]{text.strip()}[{target_lang}]"
# Reduce max tokens for faster inference
input_tokens = len(text.split())
max_tokens = min(50, max(20, int(input_tokens * 1.2)))
# Generate translation with aggressive performance optimizations
try:
response = self.model.create_completion(
prompt,
max_tokens=max_tokens,
temperature=0.0, # Deterministic for faster inference
top_k=1, # Only consider most likely token
top_p=1.0, # No sampling
repeat_penalty=1.0, # No repeat penalty
stream=False, # Get complete response at once
stop=["[/", "\n\n"], # Stop early if possible
)
translation = response['choices'][0]['text'].strip()
# Log performance
inference_time = time.time() - start_time
tokens_per_second = (input_tokens + len(translation.split())) / inference_time
print(f"Translation: {inference_time:.3f}s ({tokens_per_second:.1f} tokens/sec)")
return translation
except Exception as e:
print(f"Translation error: {e}")
return f"Error: Could not translate text. Try shorter input."
def request_translation(self, direction, text, callback_id):
"""Queue a translation request"""
self.request_queue.put((direction, text, callback_id))
# Create optimized worker pool - use just one worker for better performance with Q8 model on CPU
worker_pool = ModelWorkerPool(num_workers=1)
# Counter for request IDs
next_request_id = 0
# Fast similarity check function for finding close matches in cache
def find_similar_cached(direction, text, threshold=0.8):
"""Find similar translations in cache based on prefix matching"""
if len(text) < 5: # For very short inputs, look for exact matches
return None
text_lower = text.lower()
best_match = None
best_score = 0
for cached_key in list(translation_cache.keys()):
cached_dir, cached_text = cached_key.split(":", 1)
if cached_dir != direction:
continue
# Simple similarity - prefix matching
if cached_text.lower().startswith(text_lower[:5]):
similarity = min(1.0, len(text_lower) / max(1, len(cached_text.lower())))
if similarity > best_score and similarity > threshold:
best_score = similarity
best_match = translation_cache[cached_key]
return best_match
# Gradio interface functions
def translate(direction, text, progress=gr.Progress()):
"""Queue translation request and wait for result - optimized version"""
global next_request_id
# Trim whitespace for better cache hits
text = text.strip()
# Skip empty inputs
if not text:
return ""
# Check LRU cache first
cached = get_cached_translation(direction, text)
if cached is not None:
return cached
# Check main cache
cache_key = f"{direction}:{text}"
if cache_key in translation_cache:
return translation_cache[cache_key]
# For short inputs, try to find similar cached
if len(text) < 20:
similar = find_similar_cached(direction, text)
if similar:
return similar
# Generate unique request ID
request_id = next_request_id
next_request_id += 1
# Queue the request
worker_pool.request_translation(direction, text, request_id)
# Wait for the response with reasonable timeout
progress(0, desc="Translating...")
max_wait = 20 # Reduced maximum wait time
start_time = time.time()
# Show progress while waiting
while time.time() - start_time < max_wait:
progress((time.time() - start_time) / max_wait)
# Check for our response
try:
while not worker_pool.response_queue.empty():
resp_id, result = worker_pool.response_queue.get_nowait()
if resp_id == request_id:
# Update LRU cache
get_cached_translation.__wrapped__.__defaults__ = (result,)
progress(1.0)
return result
except queue.Empty:
pass
# Small sleep to prevent CPU hogging - reduced for faster response
time.sleep(0.01)
progress(1.0)
return "Translation timed out. Please try a shorter text."
# Create Gradio interface with simplified UI for performance
with gr.Blocks(title="Fast CPU Translation App") as iface:
gr.Markdown(f"""
## Fast CPU Translation App
Running on: {'GPU: ' + gpu_name if has_gpu else 'CPU only - Optimized'}
**For best performance, use short sentences or phrases.**
""")
with gr.Row():
direction = gr.Radio(
choices=["English to Spanish", "Spanish to English", "English to Korean", "Korean to English"],
label="Translation Direction",
value="English to Spanish"
)
with gr.Row():
input_text = gr.Textbox(lines=3, label="Input Text", placeholder="Enter text to translate (shorter is faster)...")
output_text = gr.Textbox(lines=3, label="Translation")
# Add translate button
translate_btn = gr.Button("Translate")
translate_btn.click(fn=translate, inputs=[direction, input_text], outputs=output_text)
# Add examples with common short phrases for quick results
gr.Examples(
examples=[
["English to Spanish", "Hello"],
["Spanish to English", "Hola"],
["English to Korean", "Thank you"],
["Korean to English", "๊ฐ์ฌํฉ๋๋ค"]
],
inputs=[direction, input_text],
fn=translate,
outputs=output_text
)
# Add performance tips
gr.Markdown("""
### Performance Tips
- Keep text under 50 characters for fastest results
- Common phrases are pre-cached
- First translation may be slow, subsequent ones faster
- Frequently used phrases use an LRU cache for speed
""")
# Launch with optimized settings
if __name__ == "__main__":
iface.launch(
debug=False,
show_error=True,
share=False,
quiet=True,
server_name="0.0.0.0",
server_port=7860
) |