Update app.py
Browse files
app.py
CHANGED
@@ -18,6 +18,160 @@ from ipex_llm.langchain.embeddings import TransformersEmbeddings
|
|
18 |
from langchain import LLMChain
|
19 |
from utils.utils import new_cd
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
parent_dir = os.path.dirname(__file__)
|
22 |
|
23 |
condense_template = """
|
|
|
18 |
from langchain import LLMChain
|
19 |
from utils.utils import new_cd
|
20 |
|
21 |
+
from ipex_llm.langchain.llms import TransformersLLM
|
22 |
+
from langchain import LLMChain
|
23 |
+
from langchain.chains.summarize import load_summarize_chain
|
24 |
+
from langchain.docstore.document import Document
|
25 |
+
from langchain.prompts import PromptTemplate
|
26 |
+
from langchain.chains.combine_documents.stuff import StuffDocumentsChain
|
27 |
+
from langchain.chains import MapReduceDocumentsChain, ReduceDocumentsChain
|
28 |
+
from langchain.text_splitter import CharacterTextSplitter, RecursiveCharacterTextSplitter
|
29 |
+
|
30 |
+
|
31 |
+
class Sum():
|
32 |
+
def __init__(self, args):
|
33 |
+
self.llm_version = args.llm_version
|
34 |
+
# self.max_tokens = args.qa_max_new_tokens
|
35 |
+
|
36 |
+
def summarize_refine(self, script):
|
37 |
+
text_splitter = CharacterTextSplitter(chunk_size=1024, separator="\n", chunk_overlap=0)
|
38 |
+
texts = text_splitter.split_text(script)
|
39 |
+
docs = [Document(page_content=t) for t in texts]
|
40 |
+
llm = TransformersLLM.from_model_id_low_bit(f"checkpoint\\{self.llm_version}")
|
41 |
+
|
42 |
+
prompt_template = """Write a concise summary of the following:
|
43 |
+
{text}
|
44 |
+
CONCISE SUMMARY:"""
|
45 |
+
prompt = PromptTemplate.from_template(prompt_template)
|
46 |
+
refine_template = (
|
47 |
+
"Your job is to produce a final summary\n"
|
48 |
+
"We have provided an existing summary up to a certain point: {existing_answer}\n"
|
49 |
+
"We have the opportunity to refine the existing summary"
|
50 |
+
"(only if needed) with some more context below.\n"
|
51 |
+
"------------\n"
|
52 |
+
"{text}\n"
|
53 |
+
"------------\n"
|
54 |
+
"If the context isn't useful, return the original summary."
|
55 |
+
)
|
56 |
+
refine_prompt = PromptTemplate.from_template(refine_template)
|
57 |
+
chain = load_summarize_chain(
|
58 |
+
llm=llm,
|
59 |
+
chain_type="refine",
|
60 |
+
question_prompt=prompt,
|
61 |
+
refine_prompt=refine_prompt,
|
62 |
+
return_intermediate_steps=True,
|
63 |
+
input_key="input_documents",
|
64 |
+
output_key="output_text",
|
65 |
+
)
|
66 |
+
result = chain({"input_documents": docs}, return_only_outputs=True)
|
67 |
+
|
68 |
+
return result
|
69 |
+
|
70 |
+
def summarize_mapreduce(self, script):
|
71 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=2000, chunk_overlap=0)
|
72 |
+
texts = text_splitter.split_text(script)
|
73 |
+
text = [Document(page_content=t) for t in texts]
|
74 |
+
|
75 |
+
llm = TransformersLLM.from_model_id_low_bit(f"checkpoint\\{self.llm_version}")
|
76 |
+
|
77 |
+
# Map
|
78 |
+
map_template = """The following is a meeting recording
|
79 |
+
=========
|
80 |
+
{texts}
|
81 |
+
=========
|
82 |
+
Based on this list of recordings, please summary the main idea briefly
|
83 |
+
Helpful Answer:"""
|
84 |
+
map_prompt = PromptTemplate.from_template(map_template)
|
85 |
+
map_chain = LLMChain(llm=llm, prompt=map_prompt, llm_kwargs={"max_new_tokens": 512})
|
86 |
+
|
87 |
+
# Reduce
|
88 |
+
reduce_template = """The following is set of summaries:
|
89 |
+
=========
|
90 |
+
{texts}
|
91 |
+
=========
|
92 |
+
Take these and distill it into a final, consolidated summary of the meeting.
|
93 |
+
Helpful Answer:"""
|
94 |
+
reduce_prompt = PromptTemplate.from_template(reduce_template)
|
95 |
+
reduce_chain = LLMChain(llm=llm, prompt=reduce_prompt, llm_kwargs={"max_new_tokens": 4096})
|
96 |
+
|
97 |
+
# Takes a list of documents, combines them into a single string, and passes this to an LLMChain
|
98 |
+
combine_documents_chain = StuffDocumentsChain(
|
99 |
+
llm_chain=reduce_chain, document_variable_name="texts"
|
100 |
+
)
|
101 |
+
|
102 |
+
# Combines and iteratively reduces the mapped documents
|
103 |
+
reduce_documents_chain = ReduceDocumentsChain(
|
104 |
+
combine_documents_chain=combine_documents_chain,
|
105 |
+
collapse_documents_chain=combine_documents_chain,
|
106 |
+
token_max=4000,
|
107 |
+
)
|
108 |
+
|
109 |
+
# Combining documents by mapping a chain over them, then combining results
|
110 |
+
map_reduce_chain = MapReduceDocumentsChain(
|
111 |
+
llm_chain=map_chain,
|
112 |
+
reduce_documents_chain=reduce_documents_chain,
|
113 |
+
document_variable_name="texts",
|
114 |
+
return_intermediate_steps=False,
|
115 |
+
)
|
116 |
+
|
117 |
+
result = map_reduce_chain({"input_documents": text}, return_only_outputs=True)
|
118 |
+
# print("-." * 40)
|
119 |
+
# print(result)
|
120 |
+
result = result['output_text'].split("Helpful Answer:").strip()[-1]
|
121 |
+
return result
|
122 |
+
|
123 |
+
def summarize(self, script):
|
124 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1024, chunk_overlap=0)
|
125 |
+
texts = text_splitter.split_text(script)
|
126 |
+
|
127 |
+
prompt_template = """The following is a piece of meeting recording:
|
128 |
+
<<<{text}>>>
|
129 |
+
Based on recording, summary the main idea fluently.
|
130 |
+
JUST SUMMARY!NO OTHER WORDS!
|
131 |
+
SUMMARY:"""
|
132 |
+
|
133 |
+
reduce_template = """The following is a meeting recording pieces:
|
134 |
+
<<<{text}>>>
|
135 |
+
Take these and distill it into a final, consolidated summary of the meeting.
|
136 |
+
JUST SUMMARY!NO OTHER WORDS!
|
137 |
+
SUMMARY:"""
|
138 |
+
|
139 |
+
print(len(texts))
|
140 |
+
for text in texts:
|
141 |
+
print(text)
|
142 |
+
print("\n")
|
143 |
+
|
144 |
+
llm = TransformersLLM.from_model_id_low_bit(
|
145 |
+
f"checkpoint\\{self.llm_version}")
|
146 |
+
sum_split = []
|
147 |
+
|
148 |
+
for text in texts:
|
149 |
+
response = llm(prompt=prompt_template.format(text=text), max_new_tokens=1024)
|
150 |
+
print(response)
|
151 |
+
response_answer = response.split("SUMMARY:")
|
152 |
+
|
153 |
+
sum_split.append(response_answer[1])
|
154 |
+
|
155 |
+
sum_all = "\n".join(sum_split)
|
156 |
+
|
157 |
+
result = llm(prompt=reduce_template.format(text=sum_all), max_new_tokens=4000)
|
158 |
+
result_split = result.split("SUMMARY:")
|
159 |
+
return result_split[1]
|
160 |
+
|
161 |
+
# # for test
|
162 |
+
# import argparse
|
163 |
+
#
|
164 |
+
# parser = argparse.ArgumentParser()
|
165 |
+
# parser.add_argument("--llm_version", default="Llama-2-7b-chat-hf-INT4", help="LLM model version")
|
166 |
+
# args = parser.parse_args()
|
167 |
+
# file_path = "../test.txt"
|
168 |
+
# with open(file_path, "r", encoding="utf-8") as file:
|
169 |
+
# content = file.read()
|
170 |
+
# Sumbot = Sum(args)
|
171 |
+
# result = Sumbot.summarize_map(content)
|
172 |
+
# print("-." * 20)
|
173 |
+
# print(result)
|
174 |
+
|
175 |
parent_dir = os.path.dirname(__file__)
|
176 |
|
177 |
condense_template = """
|