joey1101 commited on
Commit
6f0ca63
·
verified ·
1 Parent(s): e3ec85b

Delete llm_model.py

Browse files
Files changed (1) hide show
  1. llm_model.py +0 -92
llm_model.py DELETED
@@ -1,92 +0,0 @@
1
- import os
2
- from langchain.chains import ConversationalRetrievalChain, StuffDocumentsChain
3
- from langchain.prompts import PromptTemplate
4
- from ipex_llm.langchain.llms import TransformersLLM
5
- from langchain.vectorstores import FAISS
6
- from langchain.text_splitter import CharacterTextSplitter, RecursiveCharacterTextSplitter
7
- from ipex_llm.langchain.embeddings import TransformersEmbeddings
8
- from langchain import LLMChain
9
- from utils.utils import new_cd
10
-
11
- parent_dir = os.path.dirname(__file__)
12
-
13
- condense_template = """
14
- Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question.
15
- You can assume the discussion is about the video content.
16
- REMEMBER: If there is no relevant information within the context, just say "Hmm, I'm \
17
- not sure." Don't try to make up an answer. \
18
- Chat History:
19
- {chat_history}
20
- Follow Up Question: {question}
21
- Standalone question:
22
- """
23
-
24
- qa_template = """
25
- You are an AI assistant designed for answering questions about a meeting.
26
- You are given a word records of this meeting.
27
- Try to comprehend the dialogs and provide a answer based on it.
28
- =========
29
- {context}
30
- =========
31
- Question: {question}
32
- Answer:
33
- """
34
- # CONDENSE_QUESTION_PROMPT 用于将聊天历史记录和下一个问题压缩为一个独立的问题
35
- CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(condense_template)
36
- # QA_PROMPT为机器人设定基调和目的
37
- QA_PROMPT = PromptTemplate(template=qa_template, input_variables=["question", "context"])
38
- # DOC_PROMPT = PromptTemplate.from_template("Video Clip {video_clip}: {page_content}")
39
- DOC_PROMPT = PromptTemplate.from_template("{page_content}")
40
-
41
-
42
- class LlmReasoner():
43
- def __init__(self, args):
44
- self.history = []
45
- self.llm_version = args.llm_version
46
- self.embed_version = args.embed_version
47
- self.qa_chain = None
48
- self.vectorstore = None
49
- self.top_k = args.top_k
50
- self.qa_max_new_tokens = args.qa_max_new_tokens
51
- self.init_model()
52
-
53
- def init_model(self):
54
- with new_cd(parent_dir):
55
- self.llm = TransformersLLM.from_model_id_low_bit(
56
- f"..\\checkpoints\\{self.llm_version}")
57
- self.llm.streaming = False
58
- self.embeddings = TransformersEmbeddings.from_model_id(
59
- model_id=f"..\\checkpoints\\{self.embed_version}")
60
-
61
- def create_qa_chain(self, args, input_log):
62
- self.top_k = args.top_k
63
- self.qa_max_new_tokens = args.qa_max_new_tokens
64
- self.question_generator = LLMChain(llm=self.llm, prompt=CONDENSE_QUESTION_PROMPT)
65
- self.answer_generator = LLMChain(llm=self.llm, prompt=QA_PROMPT,
66
- llm_kwargs={"max_new_tokens": self.qa_max_new_tokens})
67
- self.doc_chain = StuffDocumentsChain(llm_chain=self.answer_generator, document_prompt=DOC_PROMPT,
68
- document_variable_name='context')
69
- # 拆分查看字符的文本, 创建一个新的文本分割器
70
- # self.text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=0, keep_separator=True)
71
- self.text_splitter = RecursiveCharacterTextSplitter(chunk_size=2048, chunk_overlap=0)
72
- texts = self.text_splitter.split_text(input_log)
73
- self.vectorstore = FAISS.from_texts(texts, self.embeddings,
74
- metadatas=[{"video_clip": str(i)} for i in range(len(texts))])
75
- retriever = self.vectorstore.as_retriever(search_kwargs={"k": self.top_k})
76
- self.qa_chain = ConversationalRetrievalChain(retriever=retriever,
77
- question_generator=self.question_generator,
78
- combine_docs_chain=self.doc_chain,
79
- return_generated_question=True,
80
- return_source_documents=True,
81
- rephrase_question=False)
82
-
83
- def __call__(self, question):
84
- response = self.qa_chain({"question": question, "chat_history": self.history})
85
- answer = response["answer"]
86
- generated_question = response["generated_question"]
87
- source_documents = response["source_documents"]
88
- self.history.append([question, answer])
89
- return self.history, generated_question, source_documents
90
-
91
- def clean_history(self):
92
- self.history = []