File size: 21,399 Bytes
78b2609
c4b1c4a
cb7a285
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2962e2
 
 
 
 
 
 
 
 
 
680ca5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78b2609
 
 
 
 
 
17fe3a9
 
 
e3ec85b
 
 
 
 
 
 
 
 
 
d46516b
 
 
 
 
 
 
 
 
2f51135
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d46516b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3ec85b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17fe3a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78b2609
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
# -*- coding: utf-8 -*-
conda install -c conda-forge ffmpeg -y
import os
import contextlib
        
@contextlib.contextmanager
def new_cd(x):
    d = os.getcwd()

    # This could raise an exception, but it's probably
    # best to let it propagate and let the caller
    # deal with it, since they requested x
    os.chdir(x)

    try:
        yield

    finally:
        # This could also raise an exception, but you *really*
        # aren't equipped to figure out what went wrong if the
        # old working directory can't be restored.
        os.chdir(d)
from ipex_llm.transformers import AutoModelForCausalLM
from transformers import LlamaTokenizer


llm = AutoModelForCausalLM.from_pretrained("checkpoints\\Llama-2-7b-chat-hf",load_in_low_bit="sym_int4")
llm.save_low_bit("checkpoints\\Llama-2-7b-chat-hf-INT4")

tokenizer = LlamaTokenizer.from_pretrained("checkpoints\\Llama-2-7b-chat-hf\\")
tokenizer.save_pretrained("checkpoints\\Llama-2-7b-chat-hf-INT4")

from huggingface_hub import snapshot_download

# Clip
snapshot_download(repo_id='openai/clip-vit-base-patch32',
                  local_dir="./checkpoints/clip-vit-base-patch32")

# LLM
snapshot_download(repo_id='meta-llama/Llama-2-7b-chat-hf',
                  local_dir="./checkpoints/Llama-2-7b-chat-hf", token=hf_token)

# Translation
snapshot_download(repo_id='Helsinki-NLP/opus-mt-en-zh',
                  local_dir="./checkpoints/Helsinki-NLP-opus-mt-en-zh")
snapshot_download(repo_id='Helsinki-NLP/opus-mt-zh-en',
                  local_dir="./checkpoints/Helsinki-NLP-opus-mt-zh-en")

# Embeddings
snapshot_download(repo_id='sentence-transformers/all-MiniLM-L12-v2',
                  local_dir="./checkpoints/all-MiniLM-L12-v2")
import argparse
import gradio as gr
import os
from models.helperbot_bigdl import Chat
from models.sum_model import Sum

from models.whisper_model import AudioTranslator
from models.llm_model import LlmReasoner

import os
from langchain.chains import ConversationalRetrievalChain, StuffDocumentsChain
from langchain.prompts import PromptTemplate
from ipex_llm.langchain.llms import TransformersLLM
from langchain.vectorstores import FAISS
from langchain.text_splitter import CharacterTextSplitter, RecursiveCharacterTextSplitter
from ipex_llm.langchain.embeddings import TransformersEmbeddings
from langchain import LLMChain
from utils.utils import new_cd

from ipex_llm.langchain.llms import TransformersLLM
from langchain import LLMChain
from langchain.chains.summarize import load_summarize_chain
from langchain.docstore.document import Document
from langchain.prompts import PromptTemplate
from langchain.chains.combine_documents.stuff import StuffDocumentsChain
from langchain.chains import MapReduceDocumentsChain, ReduceDocumentsChain
from langchain.text_splitter import CharacterTextSplitter, RecursiveCharacterTextSplitter

import whisper
from ipex_llm import optimize_model

def has_intersection(t1, t2):
    if t1[1] < t2[0] or t2[1] < t1[0]:
        return False
    else:
        return True

class AudioTranslator():
    def __init__(self, args):
        self.model = whisper.load_model(args.whisper_version, download_root='checkpoints')
        self.model = optimize_model(self.model)

    def __call__(self, video_path):
        """
        input: video_path (str)
        output: audio_results (list)
        """
        print("Extract the audio results.")
        audio_results = self.model.transcribe(video_path, task = 'translate')["segments"]
        print("Finished.")
        return audio_results

    def match(self, audio_results):
        transcript = ''
        for res in audio_results:
            transcript += res['text'] + ' '
            # if has_intersection((start, end), (res["start"], res["end"])):
            #     transcript += res['text'] + ' '
        return transcript

class Sum():
    def __init__(self, args):
        self.llm_version = args.llm_version
        # self.max_tokens = args.qa_max_new_tokens

    def summarize_refine(self, script):
        text_splitter = CharacterTextSplitter(chunk_size=1024, separator="\n", chunk_overlap=0)
        texts = text_splitter.split_text(script)
        docs = [Document(page_content=t) for t in texts]
        llm = TransformersLLM.from_model_id_low_bit(f"checkpoint\\{self.llm_version}")

        prompt_template = """Write a concise summary of the following:
        {text}
        CONCISE SUMMARY:"""
        prompt = PromptTemplate.from_template(prompt_template)
        refine_template = (
            "Your job is to produce a final summary\n"
            "We have provided an existing summary up to a certain point: {existing_answer}\n"
            "We have the opportunity to refine the existing summary"
            "(only if needed) with some more context below.\n"
            "------------\n"
            "{text}\n"
            "------------\n"
            "If the context isn't useful, return the original summary."
        )
        refine_prompt = PromptTemplate.from_template(refine_template)
        chain = load_summarize_chain(
            llm=llm,
            chain_type="refine",
            question_prompt=prompt,
            refine_prompt=refine_prompt,
            return_intermediate_steps=True,
            input_key="input_documents",
            output_key="output_text",
        )
        result = chain({"input_documents": docs}, return_only_outputs=True)

        return result

    def summarize_mapreduce(self, script):
        text_splitter = RecursiveCharacterTextSplitter(chunk_size=2000, chunk_overlap=0)
        texts = text_splitter.split_text(script)
        text = [Document(page_content=t) for t in texts]

        llm = TransformersLLM.from_model_id_low_bit(f"checkpoint\\{self.llm_version}")

        # Map
        map_template = """The following is a meeting recording
        =========
        {texts}
        =========
        Based on this list of recordings, please summary the main idea briefly
        Helpful Answer:"""
        map_prompt = PromptTemplate.from_template(map_template)
        map_chain = LLMChain(llm=llm, prompt=map_prompt, llm_kwargs={"max_new_tokens": 512})

        # Reduce
        reduce_template = """The following is set of summaries:
        =========
        {texts}
        =========
        Take these and distill it into a final, consolidated summary of the meeting. 
        Helpful Answer:"""
        reduce_prompt = PromptTemplate.from_template(reduce_template)
        reduce_chain = LLMChain(llm=llm, prompt=reduce_prompt, llm_kwargs={"max_new_tokens": 4096})

        # Takes a list of documents, combines them into a single string, and passes this to an LLMChain
        combine_documents_chain = StuffDocumentsChain(
            llm_chain=reduce_chain, document_variable_name="texts"
        )

        # Combines and iteratively reduces the mapped documents
        reduce_documents_chain = ReduceDocumentsChain(
            combine_documents_chain=combine_documents_chain,
            collapse_documents_chain=combine_documents_chain,
            token_max=4000,
        )

        # Combining documents by mapping a chain over them, then combining results
        map_reduce_chain = MapReduceDocumentsChain(
            llm_chain=map_chain,
            reduce_documents_chain=reduce_documents_chain,
            document_variable_name="texts",
            return_intermediate_steps=False,
        )

        result = map_reduce_chain({"input_documents": text}, return_only_outputs=True)
        # print("-." * 40)
        # print(result)
        result = result['output_text'].split("Helpful Answer:").strip()[-1]
        return result

    def summarize(self, script):
        text_splitter = RecursiveCharacterTextSplitter(chunk_size=1024, chunk_overlap=0)
        texts = text_splitter.split_text(script)

        prompt_template = """The following is a piece of meeting recording:
        <<<{text}>>>
        Based on recording, summary the main idea fluently. 
        JUST SUMMARY!NO OTHER WORDS!
        SUMMARY:"""

        reduce_template = """The following is a meeting recording pieces:
        <<<{text}>>>
        Take these and distill it into a final, consolidated summary of the meeting. 
        JUST SUMMARY!NO OTHER WORDS!
        SUMMARY:"""

        print(len(texts))
        for text in texts:
            print(text)
            print("\n")

        llm = TransformersLLM.from_model_id_low_bit(
            f"checkpoint\\{self.llm_version}")
        sum_split = []

        for text in texts:
            response = llm(prompt=prompt_template.format(text=text), max_new_tokens=1024)
            print(response)
            response_answer = response.split("SUMMARY:")

            sum_split.append(response_answer[1])

        sum_all = "\n".join(sum_split)

        result = llm(prompt=reduce_template.format(text=sum_all), max_new_tokens=4000)
        result_split = result.split("SUMMARY:")
        return result_split[1]

# # for test
# import argparse
#
# parser = argparse.ArgumentParser()
# parser.add_argument("--llm_version", default="Llama-2-7b-chat-hf-INT4", help="LLM model version")
# args = parser.parse_args()
# file_path = "../test.txt"
# with open(file_path, "r", encoding="utf-8") as file:
#     content = file.read()
# Sumbot = Sum(args)
# result = Sumbot.summarize_map(content)
# print("-." * 20)
# print(result)

parent_dir = os.path.dirname(__file__)

condense_template = """
Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question.
You can assume the discussion is about the video content.
REMEMBER: If there is no relevant information within the context, just say "Hmm, I'm \
not sure." Don't try to make up an answer. \
Chat History:
{chat_history}
Follow Up Question: {question}
Standalone question:
"""

qa_template = """
You are an AI assistant designed for answering questions about a meeting.
You are given a word records of this meeting.
Try to comprehend the dialogs and provide a answer based on it.
=========
{context}
=========
Question: {question}
Answer: 
"""
# CONDENSE_QUESTION_PROMPT 用于将聊天历史记录和下一个问题压缩为一个独立的问题
CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(condense_template)
# QA_PROMPT为机器人设定基调和目的
QA_PROMPT = PromptTemplate(template=qa_template, input_variables=["question", "context"])
# DOC_PROMPT = PromptTemplate.from_template("Video Clip {video_clip}: {page_content}")
DOC_PROMPT = PromptTemplate.from_template("{page_content}")


class LlmReasoner():
    def __init__(self, args):
        self.history = []
        self.llm_version = args.llm_version
        self.embed_version = args.embed_version
        self.qa_chain = None
        self.vectorstore = None
        self.top_k = args.top_k
        self.qa_max_new_tokens = args.qa_max_new_tokens
        self.init_model()

    def init_model(self):
        with new_cd(parent_dir):
            self.llm = TransformersLLM.from_model_id_low_bit(
                f"..\\checkpoints\\{self.llm_version}")
            self.llm.streaming = False
            self.embeddings = TransformersEmbeddings.from_model_id(
                model_id=f"..\\checkpoints\\{self.embed_version}")

    def create_qa_chain(self, args, input_log):
        self.top_k = args.top_k
        self.qa_max_new_tokens = args.qa_max_new_tokens
        self.question_generator = LLMChain(llm=self.llm, prompt=CONDENSE_QUESTION_PROMPT)
        self.answer_generator = LLMChain(llm=self.llm, prompt=QA_PROMPT,
                                         llm_kwargs={"max_new_tokens": self.qa_max_new_tokens})
        self.doc_chain = StuffDocumentsChain(llm_chain=self.answer_generator, document_prompt=DOC_PROMPT,
                                             document_variable_name='context')
        # 拆分查看字符的文本, 创建一个新的文本分割器
        # self.text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=0, keep_separator=True)
        self.text_splitter = RecursiveCharacterTextSplitter(chunk_size=2048, chunk_overlap=0)
        texts = self.text_splitter.split_text(input_log)
        self.vectorstore = FAISS.from_texts(texts, self.embeddings,
                                            metadatas=[{"video_clip": str(i)} for i in range(len(texts))])
        retriever = self.vectorstore.as_retriever(search_kwargs={"k": self.top_k})
        self.qa_chain = ConversationalRetrievalChain(retriever=retriever,
                                                     question_generator=self.question_generator,
                                                     combine_docs_chain=self.doc_chain,
                                                     return_generated_question=True,
                                                     return_source_documents=True,
                                                     rephrase_question=False)

    def __call__(self, question):
        response = self.qa_chain({"question": question, "chat_history": self.history})
        answer = response["answer"]
        generated_question = response["generated_question"]
        source_documents = response["source_documents"]
        self.history.append([question, answer])
        return self.history, generated_question, source_documents

    def clean_history(self):
        self.history = []


class Chat:

    def __init__(self, args) -> None:
        self.args = args

    def init_model(self):
        print('\033[1;33m' + "Initializing models...".center(50, '-') + '\033[0m')
        self.audio_translator = AudioTranslator(self.args)
        self.llm_reasoner = LlmReasoner(self.args)

        print('\033[1;32m' + "Model initialization finished!".center(50, '-') + '\033[0m')

    def video2log(self, video_path):
        audio_results = self.audio_translator(video_path)

        en_log_result = []
        en_log_result_tmp = ""
        audio_transcript = self.audio_translator.match(audio_results)
        en_log_result_tmp += f"\n{audio_transcript}"

        en_log_result.append(en_log_result_tmp)

        en_log_result = "\n\n".join(en_log_result)
        print(f"\033[1;34mLog: \033[0m\n{en_log_result}\n")

        return en_log_result

    def chat2video(self, args, user_input, en_log_result):
        self.llm_reasoner.create_qa_chain(args, en_log_result)
        en_user_input = user_input

        print("\n\033[1;32mGnerating response...\033[0m")
        answer, generated_question, source_documents = self.llm_reasoner(en_user_input)
        print(f"\033[1;32mQuestion: \033[0m{user_input}")
        print(f"\033[1;32mAnswer: \033[0m{answer[0][1]}")
        self.clean_history()

        return answer, generated_question, source_documents

    def clean_history(self):
        self.llm_reasoner.clean_history()
        return

os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
parser = argparse.ArgumentParser()

# whisper model arguments
parser.add_argument("--whisper_version", default="small", help="Whisper model version for video asr")
# llm model arguments
parser.add_argument("--llm_version", default="Llama-2-7b-chat-hf-INT4", help="LLM model version")
parser.add_argument("--embed_version", default="all-MiniLM-L12-v2", help="Embedding model version")
parser.add_argument("--top_k", default=3, type=int, help="Return top k relevant contexts to llm")
parser.add_argument("--qa_max_new_tokens", default=128, type=int, help="Number of max new tokens for llm")
# general arguments
parser.add_argument("--port", type=int, default=7860, help="Gradio server port")

args = parser.parse_args()

chat = Chat(args)
sumbot = Sum(args)
chat.init_model()

global_chat_history = []
global_result = ""

global_summary = ""


def clean_conversation():
    global global_chat_history
    chat.clean_history()
    global_chat_history = []
    return '', gr.update(value=None, interactive=True), None, gr.update(value=None, visible=True), gr.update(value=None,
                                                                                                             visible=True)


def clean_chat_history():
    global global_chat_history
    chat.clean_history()
    global_chat_history = []
    return '', None


def submit_message(message, max_tokens, top_p):
    args.qa_max_new_tokens = max_tokens
    args.top_k = top_p

    print(args)
    chat_history, generated_question, source_documents = chat.chat2video(args, message, global_result)
    global_chat_history.append((message, chat_history[0][1]))
    return '', global_chat_history


def gen_script(vid_path):
    print(vid_path)
    global global_result
    if vid_path is None:
        log_text = "===== Please upload video! ====="
        gr.update(value=log_text, visible=True)
    else:
        global_result = chat.video2log(vid_path)
        # script_pth = download_script_file()
        return gr.update(value=global_result, visible=True), download_script_file()


def download_script_file():
    try:
        with open("script_result.txt", "w") as file:
            file.write(global_result)
        return "script_result.txt"
    except Exception as e:
        return f"Error preparing file for download: {str(e)}"


def download_sum_file():
    try:
        with open("sum_result.txt", "w") as file:
            file.write(global_summary)
        return "sum_result.txt"
    except Exception as e:
        return f"Error preparing file for download: {str(e)}"


def upload_file(files):
    global global_result
    file_paths = [file.name for file in files][0]
    try:
        with open(file_paths, "r", encoding="utf-8") as file:
            file_content = file.read()
            global_result = file_content
    except FileNotFoundError:
        print("File not found")
    except IOError:
        print("Error occurred while reading the file")
    return file_content, download_script_file()


def summary():
    global global_summary
    global_summary = sumbot.summarize(global_result)
    return gr.update(value=global_summary, visible=True), download_sum_file()


css = """
      #col-container {max-width: 80%; margin-left: auto; margin-right: auto;}
      #video_inp {min-height: 100px}
      #chatbox {min-height: 100px;}
      #header {text-align: center;}
      #hint {font-size: 1.0em; padding: 0.5em; margin: 0;}
      .message { font-size: 1.2em; }
      """

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(""" ## Meeting Helper Bot
        Upload meeting recording in mp3/mp4/txt format and you can get the summary and chat based on content  
        (You can adjust parameters based on your needs)
        Powered by BigDL, Llama, Whisper, and LangChain""",
                    elem_id="header")

        with gr.Column() as advanced_column:
            max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=1024, step=1, value=128)
            top_k = gr.Slider(label="Top-k", minimum=1, maximum=50, step=1, value=3)

        with gr.Row():
            with gr.Column():
                video_inp = gr.Video(label="1.Upload MP3/MP4 File")
                # file_inp = gr.File(label="file/doc_input")
                upload_button = gr.UploadButton("1. Or Click to Upload a txt File", file_types=["doc", "txt"],
                                                file_count="multiple")
                gen_btn = gr.Button("2. Generate Script")
                sum_outp = gr.Textbox(label="Summerization output", lines=15)
                # save_sum_btn = gr.Button("Save Summarization to txt file")
                save_sum_dl = gr.outputs.File(label="Download Summary")
                # save_sum_btn.click(download_sum_file, [], outputs=[gr.outputs.File(label="Download Summary")])

            with gr.Column():
                script_outp = gr.Textbox(label="Script output", lines=30)
                with gr.Row():
                    script_summarization_btn = gr.Button("3.Script Summarization ")
                    # save_script_btn = gr.Button("Save Script to txt file")

                save_script_dl = gr.outputs.File(label="Download Script")
                # save_script_btn.click(download_script_file, [], outputs=[gr.outputs.File(label="Download Script")])

        with gr.Column():
            chatbot = gr.Chatbot(elem_id="chatbox")
            input_message = gr.Textbox(show_label=False, placeholder="Enter text and press enter", visible=True)
            btn_submit = gr.Button("Submit")
            with gr.Row():
                btn_clean_chat_history = gr.Button("Clean Chat History")
                btn_clean_conversation = gr.Button("Start New Conversation")

    upload_button.upload(upload_file, upload_button, [script_outp, save_script_dl])

    gen_btn.click(gen_script, [video_inp], [script_outp, save_script_dl])
    script_summarization_btn.click(summary, [], [sum_outp, save_sum_dl])

    btn_submit.click(submit_message, [input_message, max_new_tokens, top_k], [input_message, chatbot])
    input_message.submit(submit_message, [input_message, max_new_tokens, top_k], [input_message, chatbot])

    btn_clean_conversation.click(clean_conversation, [], [input_message, video_inp, chatbot, sum_outp, script_outp])
    btn_clean_chat_history.click(clean_chat_history, [], [input_message, chatbot])

    demo.load(queur=False)

demo.queue(concurrency_count=1)
demo.launch(height='800px', server_port=args.port, debug=True, share=False)