Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
# Step 0: Essential imports
|
3 |
##########################################
|
4 |
import streamlit as st # Web interface
|
5 |
-
from transformers import ( # AI components
|
6 |
pipeline,
|
7 |
SpeechT5Processor,
|
8 |
SpeechT5ForTextToSpeech,
|
@@ -10,14 +10,15 @@ from transformers import ( # AI components
|
|
10 |
AutoModelForCausalLM,
|
11 |
AutoTokenizer
|
12 |
)
|
13 |
-
from datasets import load_dataset #
|
14 |
-
import torch #
|
15 |
-
import soundfile as sf #
|
|
|
16 |
|
17 |
##########################################
|
18 |
# Initial configuration (MUST BE FIRST)
|
19 |
##########################################
|
20 |
-
st.set_page_config( #
|
21 |
page_title="Just Comment",
|
22 |
page_icon="π¬",
|
23 |
layout="centered"
|
@@ -28,10 +29,10 @@ st.set_page_config( # Set page config first
|
|
28 |
##########################################
|
29 |
@st.cache_resource(show_spinner=False)
|
30 |
def _load_components():
|
31 |
-
"""Load and cache all models with hardware optimization"""
|
32 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
33 |
|
34 |
-
# Emotion classifier (fast)
|
35 |
emotion_pipe = pipeline(
|
36 |
"text-classification",
|
37 |
model="Thea231/jhartmann_emotion_finetuning",
|
@@ -39,7 +40,7 @@ def _load_components():
|
|
39 |
truncation=True
|
40 |
)
|
41 |
|
42 |
-
# Text generator (optimized)
|
43 |
text_tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen1.5-0.5B")
|
44 |
text_model = AutoModelForCausalLM.from_pretrained(
|
45 |
"Qwen/Qwen1.5-0.5B",
|
@@ -58,7 +59,7 @@ def _load_components():
|
|
58 |
torch_dtype=torch.float16
|
59 |
).to(device)
|
60 |
|
61 |
-
# Preloaded voice profile
|
62 |
speaker_emb = torch.tensor(
|
63 |
load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")[7306]["xvector"]
|
64 |
).unsqueeze(0).to(device)
|
@@ -78,10 +79,10 @@ def _load_components():
|
|
78 |
# User interface components
|
79 |
##########################################
|
80 |
def _show_interface():
|
81 |
-
"""Render input interface"""
|
82 |
-
st.title("Just Comment")
|
83 |
-
st.markdown(
|
84 |
-
return st.text_area( #
|
85 |
"π Enter your comment:",
|
86 |
placeholder="Share your thoughts...",
|
87 |
height=150,
|
@@ -92,37 +93,39 @@ def _show_interface():
|
|
92 |
# Core processing functions
|
93 |
##########################################
|
94 |
def _fast_emotion(text, analyzer):
|
95 |
-
"""Rapid emotion detection with input
|
96 |
-
result = analyzer(text[:256], return_all_scores=True)[0] #
|
97 |
-
|
|
|
98 |
return max(
|
99 |
-
(e for e in result if e['label'].lower() in
|
100 |
key=lambda x: x['score'],
|
101 |
default={'label': 'neutral', 'score': 0}
|
102 |
)
|
103 |
|
104 |
def _build_prompt(text, emotion):
|
105 |
-
"""Template-based prompt engineering"""
|
106 |
templates = {
|
107 |
-
"sadness":
|
108 |
-
"joy":
|
109 |
-
"love":
|
110 |
-
"anger":
|
111 |
-
"fear":
|
112 |
-
"surprise":
|
113 |
-
"neutral":
|
114 |
}
|
115 |
-
return
|
|
|
116 |
|
117 |
def _generate_response(text, models):
|
118 |
-
"""Optimized text generation pipeline"""
|
119 |
-
#
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
prompt
|
124 |
-
|
125 |
-
# Generate text
|
126 |
inputs = models["text_tokenizer"](
|
127 |
prompt,
|
128 |
return_tensors="pt",
|
@@ -130,65 +133,63 @@ def _generate_response(text, models):
|
|
130 |
truncation=True
|
131 |
).to(models["device"])
|
132 |
|
|
|
133 |
output = models["text_model"].generate(
|
134 |
inputs.input_ids,
|
135 |
-
max_new_tokens=120, #
|
|
|
136 |
temperature=0.7,
|
137 |
top_p=0.9,
|
138 |
do_sample=True,
|
139 |
pad_token_id=models["text_tokenizer"].eos_token_id
|
140 |
)
|
141 |
|
142 |
-
#
|
143 |
full_text = models["text_tokenizer"].decode(output[0], skip_special_tokens=True)
|
|
|
144 |
response = full_text.split("Response:")[-1].strip()
|
145 |
-
|
146 |
-
#
|
147 |
-
|
148 |
-
response = response.rsplit(".", 1)[0] + "."
|
149 |
-
return response[:200] or "Thank you for your feedback. We'll respond shortly."
|
150 |
|
151 |
def _text_to_speech(text, models):
|
152 |
-
"""
|
153 |
inputs = models["tts_processor"](
|
154 |
-
text=text[:150], # Limit text length
|
155 |
return_tensors="pt"
|
156 |
).to(models["device"])
|
157 |
|
158 |
-
with torch.inference_mode(): #
|
159 |
spectrogram = models["tts_model"].generate_speech(
|
160 |
inputs["input_ids"],
|
161 |
models["speaker_emb"]
|
162 |
)
|
163 |
audio = models["tts_vocoder"](spectrogram)
|
164 |
|
165 |
-
sf.write("output.wav", audio.cpu().numpy(), 16000)
|
166 |
return "output.wav"
|
167 |
|
168 |
##########################################
|
169 |
# Main application flow
|
170 |
##########################################
|
171 |
def main():
|
172 |
-
"""Primary execution controller"""
|
173 |
-
# Load components
|
174 |
-
|
175 |
-
|
176 |
-
# Show interface
|
177 |
-
user_input = _show_interface()
|
178 |
|
179 |
-
if user_input:
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
st.audio(audio_path, format="audio/wav")
|
192 |
|
|
|
193 |
if __name__ == "__main__":
|
194 |
-
main()
|
|
|
2 |
# Step 0: Essential imports
|
3 |
##########################################
|
4 |
import streamlit as st # Web interface
|
5 |
+
from transformers import ( # AI components: emotion analysis, TTS, and text generation
|
6 |
pipeline,
|
7 |
SpeechT5Processor,
|
8 |
SpeechT5ForTextToSpeech,
|
|
|
10 |
AutoModelForCausalLM,
|
11 |
AutoTokenizer
|
12 |
)
|
13 |
+
from datasets import load_dataset # To load speaker embeddings dataset
|
14 |
+
import torch # For tensor operations
|
15 |
+
import soundfile as sf # For writing audio files
|
16 |
+
import sentencepiece # Required for SpeechT5Processor tokenization
|
17 |
|
18 |
##########################################
|
19 |
# Initial configuration (MUST BE FIRST)
|
20 |
##########################################
|
21 |
+
st.set_page_config( # Configure the web page
|
22 |
page_title="Just Comment",
|
23 |
page_icon="π¬",
|
24 |
layout="centered"
|
|
|
29 |
##########################################
|
30 |
@st.cache_resource(show_spinner=False)
|
31 |
def _load_components():
|
32 |
+
"""Load and cache all models with hardware optimization."""
|
33 |
+
device = "cuda" if torch.cuda.is_available() else "cpu" # Detect available device
|
34 |
|
35 |
+
# Emotion classifier (fast and truncated)
|
36 |
emotion_pipe = pipeline(
|
37 |
"text-classification",
|
38 |
model="Thea231/jhartmann_emotion_finetuning",
|
|
|
40 |
truncation=True
|
41 |
)
|
42 |
|
43 |
+
# Text generator (optimized with FP16 and auto device mapping)
|
44 |
text_tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen1.5-0.5B")
|
45 |
text_model = AutoModelForCausalLM.from_pretrained(
|
46 |
"Qwen/Qwen1.5-0.5B",
|
|
|
59 |
torch_dtype=torch.float16
|
60 |
).to(device)
|
61 |
|
62 |
+
# Preloaded voice profile for TTS
|
63 |
speaker_emb = torch.tensor(
|
64 |
load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")[7306]["xvector"]
|
65 |
).unsqueeze(0).to(device)
|
|
|
79 |
# User interface components
|
80 |
##########################################
|
81 |
def _show_interface():
|
82 |
+
"""Render the input interface"""
|
83 |
+
st.title("π Just Comment") # Display the title with a rocket icon
|
84 |
+
st.markdown("### I'm listening to you, my friendο½") # Display the friendly subtitle
|
85 |
+
return st.text_area( # Return user's comment input
|
86 |
"π Enter your comment:",
|
87 |
placeholder="Share your thoughts...",
|
88 |
height=150,
|
|
|
93 |
# Core processing functions
|
94 |
##########################################
|
95 |
def _fast_emotion(text, analyzer):
|
96 |
+
"""Rapid emotion detection with input length limit."""
|
97 |
+
result = analyzer(text[:256], return_all_scores=True)[0] # Analyze only the first 256 characters for speed
|
98 |
+
valid_emotions = ['sadness', 'joy', 'love', 'anger', 'fear', 'surprise']
|
99 |
+
# Select the emotion from valid ones or default to neutral
|
100 |
return max(
|
101 |
+
(e for e in result if e['label'].lower() in valid_emotions),
|
102 |
key=lambda x: x['score'],
|
103 |
default={'label': 'neutral', 'score': 0}
|
104 |
)
|
105 |
|
106 |
def _build_prompt(text, emotion):
|
107 |
+
"""Template-based prompt engineering in continuous prose (no bullet points)."""
|
108 |
templates = {
|
109 |
+
"sadness": "I sensed sadness in your comment: {text}. We are truly sorry and are here to support you.",
|
110 |
+
"joy": "Your comment radiates joy: {text}. Thank you for your bright feedback; we look forward to serving you even better.",
|
111 |
+
"love": "Your message exudes love: {text}. We appreciate your heartfelt words and cherish our connection with you.",
|
112 |
+
"anger": "I understand your comment reflects anger: {text}. Please accept our sincere apologies as we work to resolve your concerns.",
|
113 |
+
"fear": "It seems you feel fear in your comment: {text}. We want to reassure you that your safety and satisfaction are our priority.",
|
114 |
+
"surprise": "Your comment conveys surprise: {text}. We are delighted by your experience and will strive to exceed your expectations.",
|
115 |
+
"neutral": "Thank you for your comment: {text}. We remain committed to providing you with outstanding service."
|
116 |
}
|
117 |
+
# Build and return a continuous prompt with the user comment truncated to 200 characters
|
118 |
+
return templates.get(emotion.lower(), templates["neutral"]).format(text=text[:200])
|
119 |
|
120 |
def _generate_response(text, models):
|
121 |
+
"""Optimized text generation pipeline using the detected emotion."""
|
122 |
+
# Detect the dominant emotion quickly
|
123 |
+
detected = _fast_emotion(text, models["emotion"])
|
124 |
+
# Build prompt based on detected emotion (continuous sentences)
|
125 |
+
prompt = _build_prompt(text, detected["label"])
|
126 |
+
print(f"Generated prompt: {prompt}") # Print prompt using f-string for debugging
|
127 |
+
|
128 |
+
# Generate text using the Qwen model
|
129 |
inputs = models["text_tokenizer"](
|
130 |
prompt,
|
131 |
return_tensors="pt",
|
|
|
133 |
truncation=True
|
134 |
).to(models["device"])
|
135 |
|
136 |
+
# Generate the response ensuring balanced length (approximately 50-200 tokens)
|
137 |
output = models["text_model"].generate(
|
138 |
inputs.input_ids,
|
139 |
+
max_new_tokens=120, # Upper bound tokens for answer
|
140 |
+
min_length=50, # Lower bound to ensure completeness
|
141 |
temperature=0.7,
|
142 |
top_p=0.9,
|
143 |
do_sample=True,
|
144 |
pad_token_id=models["text_tokenizer"].eos_token_id
|
145 |
)
|
146 |
|
147 |
+
input_len = inputs.input_ids.shape[1] # Determine the length of the prompt tokens
|
148 |
full_text = models["text_tokenizer"].decode(output[0], skip_special_tokens=True)
|
149 |
+
# Extract only the generated portion after "Response:" if present
|
150 |
response = full_text.split("Response:")[-1].strip()
|
151 |
+
print(f"Generated response: {response}") # Debug print using f-string
|
152 |
+
# Return response ensuring it is within 50-200 words (approximation by character length here)
|
153 |
+
return response[:200] # Truncate to 200 characters as an approximation
|
|
|
|
|
154 |
|
155 |
def _text_to_speech(text, models):
|
156 |
+
"""Efficiently synthesize speech for the given text."""
|
157 |
inputs = models["tts_processor"](
|
158 |
+
text=text[:150], # Limit text length for TTS to 150 characters
|
159 |
return_tensors="pt"
|
160 |
).to(models["device"])
|
161 |
|
162 |
+
with torch.inference_mode(): # Fast, no-grad inference
|
163 |
spectrogram = models["tts_model"].generate_speech(
|
164 |
inputs["input_ids"],
|
165 |
models["speaker_emb"]
|
166 |
)
|
167 |
audio = models["tts_vocoder"](spectrogram)
|
168 |
|
169 |
+
sf.write("output.wav", audio.cpu().numpy(), 16000) # Save generated audio as .wav at 16kHz
|
170 |
return "output.wav"
|
171 |
|
172 |
##########################################
|
173 |
# Main application flow
|
174 |
##########################################
|
175 |
def main():
|
176 |
+
"""Primary execution controller."""
|
177 |
+
components = _load_components() # Load all models and components
|
178 |
+
user_input = _show_interface() # Render input interface and capture user comment
|
|
|
|
|
|
|
179 |
|
180 |
+
if user_input: # If a comment is provided
|
181 |
+
with st.spinner("π Generating response..."):
|
182 |
+
generated_response = _generate_response(user_input, components) # Generate response based on emotion and text
|
183 |
+
st.subheader("π Response")
|
184 |
+
st.markdown(
|
185 |
+
f"<p style='color:#3498DB; font-size:20px;'>{generated_response}</p>",
|
186 |
+
unsafe_allow_html=True
|
187 |
+
) # Display the generated response in styled format
|
188 |
+
with st.spinner("π Synthesizing audio..."):
|
189 |
+
audio_file = _text_to_speech(generated_response, components) # Convert response to speech
|
190 |
+
st.audio(audio_file, format="audio/wav", start_time=0) # Embed auto-playing audio player
|
191 |
+
print(f"Final generated response: {generated_response}") # Debug output using f-string
|
|
|
192 |
|
193 |
+
# Run the main function when the script is executed
|
194 |
if __name__ == "__main__":
|
195 |
+
main() # Call the main function
|