Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,60 +1,53 @@
|
|
1 |
##########################################
|
2 |
-
# Step 0:
|
3 |
##########################################
|
4 |
-
import streamlit as st # Web interface
|
5 |
-
from transformers import (
|
6 |
pipeline,
|
7 |
SpeechT5Processor,
|
8 |
SpeechT5ForTextToSpeech,
|
9 |
SpeechT5HifiGan,
|
10 |
AutoModelForCausalLM,
|
11 |
AutoTokenizer
|
12 |
-
)
|
13 |
-
from datasets import load_dataset # Voice
|
14 |
-
import torch # Tensor
|
15 |
-
import soundfile as sf # Audio
|
16 |
-
import time # Execution timing
|
17 |
|
18 |
##########################################
|
19 |
-
# Initial configuration (MUST
|
20 |
##########################################
|
21 |
-
st.set_page_config(
|
22 |
page_title="Just Comment",
|
23 |
page_icon="💬",
|
24 |
-
layout="centered"
|
25 |
-
initial_sidebar_state="collapsed"
|
26 |
)
|
27 |
|
28 |
##########################################
|
29 |
-
# Optimized model
|
30 |
##########################################
|
31 |
@st.cache_resource(show_spinner=False)
|
32 |
-
def
|
33 |
-
"""Load and cache models with
|
34 |
-
# Initialize device-agnostic model loading
|
35 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
36 |
|
37 |
-
#
|
38 |
emotion_pipe = pipeline(
|
39 |
"text-classification",
|
40 |
model="Thea231/jhartmann_emotion_finetuning",
|
41 |
device=device,
|
42 |
-
truncation=True
|
43 |
-
padding=True
|
44 |
)
|
45 |
|
46 |
-
#
|
47 |
-
|
48 |
-
|
49 |
-
use_fast=True
|
50 |
-
)
|
51 |
-
textgen_model = AutoModelForCausalLM.from_pretrained(
|
52 |
"Qwen/Qwen1.5-0.5B",
|
53 |
torch_dtype=torch.float16,
|
54 |
device_map="auto"
|
55 |
)
|
56 |
|
57 |
-
#
|
58 |
tts_processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
59 |
tts_model = SpeechT5ForTextToSpeech.from_pretrained(
|
60 |
"microsoft/speecht5_tts",
|
@@ -65,169 +58,137 @@ def _load_models():
|
|
65 |
torch_dtype=torch.float16
|
66 |
).to(device)
|
67 |
|
68 |
-
#
|
69 |
-
|
70 |
load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")[7306]["xvector"]
|
71 |
).unsqueeze(0).to(device)
|
72 |
|
73 |
return {
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
}
|
83 |
|
84 |
##########################################
|
85 |
-
#
|
86 |
##########################################
|
87 |
-
def
|
88 |
-
"""Render
|
89 |
st.title("Just Comment")
|
90 |
-
st.markdown(f"### I'm listening to you, my friend~")
|
91 |
-
|
92 |
-
return st.text_area(
|
93 |
"📝 Enter your comment:",
|
94 |
-
placeholder="
|
95 |
height=150,
|
96 |
-
key="
|
97 |
)
|
98 |
|
99 |
##########################################
|
100 |
-
# Core
|
101 |
##########################################
|
102 |
-
def
|
103 |
-
"""
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
# Find dominant emotion
|
109 |
-
dominant = max(
|
110 |
-
(e for e in results if e['label'].lower() in valid_emotions),
|
111 |
key=lambda x: x['score'],
|
112 |
-
default={'label': 'neutral', 'score':
|
113 |
)
|
114 |
-
|
115 |
-
st.write(f"⏱️ Emotion analysis time: {time.time()-start_time:.2f}s")
|
116 |
-
return dominant
|
117 |
|
118 |
-
def
|
119 |
-
"""
|
120 |
-
|
121 |
-
"sadness": f"Sadness detected: {{
|
122 |
-
"joy": f"Joy detected: {{
|
123 |
-
"love": f"Love detected: {{
|
124 |
-
"anger": f"Anger detected: {{
|
125 |
-
"fear": f"Fear detected: {{
|
126 |
-
"surprise": f"Surprise detected: {{
|
127 |
-
"neutral": f"Feedback: {{
|
128 |
}
|
129 |
-
return
|
130 |
-
|
131 |
-
def _process_response(raw_text):
|
132 |
-
"""Fast response processing with validation"""
|
133 |
-
# Extract response after last marker
|
134 |
-
response = raw_text.split("Response:")[-1].strip()
|
135 |
-
|
136 |
-
# Ensure complete sentences
|
137 |
-
if '.' in response:
|
138 |
-
response = response.rsplit('.', 1)[0] + '.'
|
139 |
-
|
140 |
-
# Length control
|
141 |
-
return response[:200] if len(response) > 50 else "Thank you for your feedback. We'll respond shortly."
|
142 |
|
143 |
-
def
|
144 |
-
"""
|
145 |
-
|
|
|
146 |
|
147 |
-
#
|
148 |
-
|
149 |
|
150 |
-
# Generate
|
151 |
-
|
152 |
-
|
153 |
-
# Tokenize and generate
|
154 |
-
inputs = models['textgen_tokenizer'](
|
155 |
prompt,
|
156 |
return_tensors="pt",
|
157 |
-
max_length=
|
158 |
truncation=True
|
159 |
-
).to(models[
|
160 |
|
161 |
-
|
162 |
inputs.input_ids,
|
163 |
-
max_new_tokens=
|
164 |
temperature=0.7,
|
165 |
top_p=0.9,
|
166 |
do_sample=True,
|
167 |
-
pad_token_id=models[
|
168 |
)
|
169 |
|
170 |
-
#
|
171 |
-
|
172 |
-
|
173 |
-
skip_special_tokens=True
|
174 |
-
)
|
175 |
|
176 |
-
|
177 |
-
|
|
|
|
|
178 |
|
179 |
-
def
|
180 |
-
"""
|
181 |
-
|
182 |
-
|
183 |
-
# Process text
|
184 |
-
inputs = models['tts_processor'](
|
185 |
text=text[:150], # Limit text length
|
186 |
return_tensors="pt"
|
187 |
-
).to(models[
|
188 |
|
189 |
-
#
|
190 |
-
|
191 |
-
spectrogram = models['tts_model'].generate_speech(
|
192 |
inputs["input_ids"],
|
193 |
-
models[
|
194 |
)
|
195 |
-
|
196 |
-
|
197 |
-
# Save optimized audio file
|
198 |
-
sf.write("response.wav", waveform.cpu().numpy(), 16000)
|
199 |
|
200 |
-
|
201 |
-
return "
|
202 |
|
203 |
##########################################
|
204 |
-
# Main
|
205 |
##########################################
|
206 |
def main():
|
207 |
-
"""
|
208 |
-
# Load
|
209 |
-
|
210 |
|
211 |
-
#
|
212 |
-
user_input =
|
213 |
|
214 |
if user_input:
|
215 |
-
total_start = time.time()
|
216 |
-
|
217 |
# Text generation
|
218 |
-
with st.spinner("
|
219 |
-
|
220 |
|
221 |
-
# Display
|
222 |
-
st.subheader(f"📄
|
223 |
-
st.markdown(f"```\n{
|
224 |
|
225 |
# Audio generation
|
226 |
-
with st.spinner("🔊
|
227 |
-
|
228 |
-
st.audio(
|
229 |
-
|
230 |
-
st.write(f"⏱️ Total execution time: {time.time()-total_start:.2f}s")
|
231 |
|
232 |
if __name__ == "__main__":
|
233 |
main()
|
|
|
1 |
##########################################
|
2 |
+
# Step 0: Essential imports
|
3 |
##########################################
|
4 |
+
import streamlit as st # Web interface
|
5 |
+
from transformers import ( # AI components
|
6 |
pipeline,
|
7 |
SpeechT5Processor,
|
8 |
SpeechT5ForTextToSpeech,
|
9 |
SpeechT5HifiGan,
|
10 |
AutoModelForCausalLM,
|
11 |
AutoTokenizer
|
12 |
+
)
|
13 |
+
from datasets import load_dataset # Voice data
|
14 |
+
import torch # Tensor operations
|
15 |
+
import soundfile as sf # Audio processing
|
|
|
16 |
|
17 |
##########################################
|
18 |
+
# Initial configuration (MUST BE FIRST)
|
19 |
##########################################
|
20 |
+
st.set_page_config( # Set page config first
|
21 |
page_title="Just Comment",
|
22 |
page_icon="💬",
|
23 |
+
layout="centered"
|
|
|
24 |
)
|
25 |
|
26 |
##########################################
|
27 |
+
# Optimized model loader with caching
|
28 |
##########################################
|
29 |
@st.cache_resource(show_spinner=False)
|
30 |
+
def _load_components():
|
31 |
+
"""Load and cache all models with hardware optimization"""
|
|
|
32 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
33 |
|
34 |
+
# Emotion classifier (fast)
|
35 |
emotion_pipe = pipeline(
|
36 |
"text-classification",
|
37 |
model="Thea231/jhartmann_emotion_finetuning",
|
38 |
device=device,
|
39 |
+
truncation=True
|
|
|
40 |
)
|
41 |
|
42 |
+
# Text generator (optimized)
|
43 |
+
text_tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen1.5-0.5B")
|
44 |
+
text_model = AutoModelForCausalLM.from_pretrained(
|
|
|
|
|
|
|
45 |
"Qwen/Qwen1.5-0.5B",
|
46 |
torch_dtype=torch.float16,
|
47 |
device_map="auto"
|
48 |
)
|
49 |
|
50 |
+
# TTS system (accelerated)
|
51 |
tts_processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
52 |
tts_model = SpeechT5ForTextToSpeech.from_pretrained(
|
53 |
"microsoft/speecht5_tts",
|
|
|
58 |
torch_dtype=torch.float16
|
59 |
).to(device)
|
60 |
|
61 |
+
# Preloaded voice profile
|
62 |
+
speaker_emb = torch.tensor(
|
63 |
load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")[7306]["xvector"]
|
64 |
).unsqueeze(0).to(device)
|
65 |
|
66 |
return {
|
67 |
+
"emotion": emotion_pipe,
|
68 |
+
"text_model": text_model,
|
69 |
+
"text_tokenizer": text_tokenizer,
|
70 |
+
"tts_processor": tts_processor,
|
71 |
+
"tts_model": tts_model,
|
72 |
+
"tts_vocoder": tts_vocoder,
|
73 |
+
"speaker_emb": speaker_emb,
|
74 |
+
"device": device
|
75 |
}
|
76 |
|
77 |
##########################################
|
78 |
+
# User interface components
|
79 |
##########################################
|
80 |
+
def _show_interface():
|
81 |
+
"""Render input interface"""
|
82 |
st.title("Just Comment")
|
83 |
+
st.markdown(f"### I'm listening to you, my friend~")
|
84 |
+
return st.text_area( # Input field
|
|
|
85 |
"📝 Enter your comment:",
|
86 |
+
placeholder="Share your thoughts...",
|
87 |
height=150,
|
88 |
+
key="input"
|
89 |
)
|
90 |
|
91 |
##########################################
|
92 |
+
# Core processing functions
|
93 |
##########################################
|
94 |
+
def _fast_emotion(text, analyzer):
|
95 |
+
"""Rapid emotion detection with input limits"""
|
96 |
+
result = analyzer(text[:256], return_all_scores=True)[0] # Limit input length
|
97 |
+
emotions = ['sadness', 'joy', 'love', 'anger', 'fear', 'surprise']
|
98 |
+
return max(
|
99 |
+
(e for e in result if e['label'].lower() in emotions),
|
|
|
|
|
|
|
100 |
key=lambda x: x['score'],
|
101 |
+
default={'label': 'neutral', 'score': 0}
|
102 |
)
|
|
|
|
|
|
|
103 |
|
104 |
+
def _build_prompt(text, emotion):
|
105 |
+
"""Template-based prompt engineering"""
|
106 |
+
templates = {
|
107 |
+
"sadness": f"Sadness detected: {{text}}\nRespond with: 1. Empathy 2. Support 3. Solution\nResponse:",
|
108 |
+
"joy": f"Joy detected: {{text}}\nRespond with: 1. Thanks 2. Praise 3. Engagement\nResponse:",
|
109 |
+
"love": f"Love detected: {{text}}\nRespond with: 1. Appreciation 2. Connection 3. Offer\nResponse:",
|
110 |
+
"anger": f"Anger detected: {{text}}\nRespond with: 1. Apology 2. Action 3. Compensation\nResponse:",
|
111 |
+
"fear": f"Fear detected: {{text}}\nRespond with: 1. Reassurance 2. Safety 3. Support\nResponse:",
|
112 |
+
"surprise": f"Surprise detected: {{text}}\nRespond with: 1. Acknowledgement 2. Solution 3. Follow-up\nResponse:",
|
113 |
+
"neutral": f"Feedback: {{text}}\nProfessional response:\n1. Acknowledgement\n2. Assistance\n3. Next steps\nResponse:"
|
114 |
}
|
115 |
+
return templates[emotion.lower()].format(text=text[:200]) # Input truncation
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
|
117 |
+
def _generate_response(text, models):
|
118 |
+
"""Optimized text generation pipeline"""
|
119 |
+
# Emotion detection
|
120 |
+
emotion = _fast_emotion(text, models["emotion"])
|
121 |
|
122 |
+
# Prompt construction
|
123 |
+
prompt = _build_prompt(text, emotion["label"])
|
124 |
|
125 |
+
# Generate text
|
126 |
+
inputs = models["text_tokenizer"](
|
|
|
|
|
|
|
127 |
prompt,
|
128 |
return_tensors="pt",
|
129 |
+
max_length=100,
|
130 |
truncation=True
|
131 |
+
).to(models["device"])
|
132 |
|
133 |
+
output = models["text_model"].generate(
|
134 |
inputs.input_ids,
|
135 |
+
max_new_tokens=120, # Balanced length
|
136 |
temperature=0.7,
|
137 |
top_p=0.9,
|
138 |
do_sample=True,
|
139 |
+
pad_token_id=models["text_tokenizer"].eos_token_id
|
140 |
)
|
141 |
|
142 |
+
# Process output
|
143 |
+
full_text = models["text_tokenizer"].decode(output[0], skip_special_tokens=True)
|
144 |
+
response = full_text.split("Response:")[-1].strip()
|
|
|
|
|
145 |
|
146 |
+
# Ensure completeness
|
147 |
+
if "." in response:
|
148 |
+
response = response.rsplit(".", 1)[0] + "."
|
149 |
+
return response[:200] or "Thank you for your feedback. We'll respond shortly."
|
150 |
|
151 |
+
def _text_to_speech(text, models):
|
152 |
+
"""High-speed audio synthesis"""
|
153 |
+
inputs = models["tts_processor"](
|
|
|
|
|
|
|
154 |
text=text[:150], # Limit text length
|
155 |
return_tensors="pt"
|
156 |
+
).to(models["device"])
|
157 |
|
158 |
+
with torch.inference_mode(): # Accelerated inference
|
159 |
+
spectrogram = models["tts_model"].generate_speech(
|
|
|
160 |
inputs["input_ids"],
|
161 |
+
models["speaker_emb"]
|
162 |
)
|
163 |
+
audio = models["tts_vocoder"](spectrogram)
|
|
|
|
|
|
|
164 |
|
165 |
+
sf.write("output.wav", audio.cpu().numpy(), 16000)
|
166 |
+
return "output.wav"
|
167 |
|
168 |
##########################################
|
169 |
+
# Main application flow
|
170 |
##########################################
|
171 |
def main():
|
172 |
+
"""Primary execution controller"""
|
173 |
+
# Load components
|
174 |
+
components = _load_components()
|
175 |
|
176 |
+
# Show interface
|
177 |
+
user_input = _show_interface()
|
178 |
|
179 |
if user_input:
|
|
|
|
|
180 |
# Text generation
|
181 |
+
with st.spinner("🔍 Analyzing..."):
|
182 |
+
response = _generate_response(user_input, components)
|
183 |
|
184 |
+
# Display result
|
185 |
+
st.subheader(f"📄 Response")
|
186 |
+
st.markdown(f"```\n{response}\n```") # f-string formatted
|
187 |
|
188 |
# Audio generation
|
189 |
+
with st.spinner("🔊 Synthesizing..."):
|
190 |
+
audio_path = _text_to_speech(response, components)
|
191 |
+
st.audio(audio_path, format="audio/wav")
|
|
|
|
|
192 |
|
193 |
if __name__ == "__main__":
|
194 |
main()
|