Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
# Step 0: Essential imports
|
3 |
##########################################
|
4 |
import streamlit as st # Web interface
|
5 |
-
from transformers import ( # AI components
|
6 |
pipeline,
|
7 |
SpeechT5Processor,
|
8 |
SpeechT5ForTextToSpeech,
|
@@ -10,15 +10,14 @@ from transformers import ( # AI components: emotion analysis, TTS, and text gen
|
|
10 |
AutoModelForCausalLM,
|
11 |
AutoTokenizer
|
12 |
)
|
13 |
-
from datasets import load_dataset #
|
14 |
-
import torch #
|
15 |
-
import soundfile as sf #
|
16 |
-
import sentencepiece # Required for SpeechT5Processor tokenization
|
17 |
|
18 |
##########################################
|
19 |
# Initial configuration (MUST BE FIRST)
|
20 |
##########################################
|
21 |
-
st.set_page_config( #
|
22 |
page_title="Just Comment",
|
23 |
page_icon="💬",
|
24 |
layout="centered"
|
@@ -29,25 +28,25 @@ st.set_page_config( # Configure the web page
|
|
29 |
##########################################
|
30 |
@st.cache_resource(show_spinner=False)
|
31 |
def _load_components():
|
32 |
-
"""Load and cache all models with hardware optimization
|
33 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
34 |
-
|
35 |
-
# Emotion classifier (fast
|
36 |
emotion_pipe = pipeline(
|
37 |
"text-classification",
|
38 |
model="Thea231/jhartmann_emotion_finetuning",
|
39 |
device=device,
|
40 |
truncation=True
|
41 |
)
|
42 |
-
|
43 |
-
# Text generator (optimized
|
44 |
text_tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen1.5-0.5B")
|
45 |
text_model = AutoModelForCausalLM.from_pretrained(
|
46 |
"Qwen/Qwen1.5-0.5B",
|
47 |
torch_dtype=torch.float16,
|
48 |
device_map="auto"
|
49 |
)
|
50 |
-
|
51 |
# TTS system (accelerated)
|
52 |
tts_processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
53 |
tts_model = SpeechT5ForTextToSpeech.from_pretrained(
|
@@ -58,12 +57,12 @@ def _load_components():
|
|
58 |
"microsoft/speecht5_hifigan",
|
59 |
torch_dtype=torch.float16
|
60 |
).to(device)
|
61 |
-
|
62 |
-
# Preloaded voice profile
|
63 |
speaker_emb = torch.tensor(
|
64 |
load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")[7306]["xvector"]
|
65 |
).unsqueeze(0).to(device)
|
66 |
-
|
67 |
return {
|
68 |
"emotion": emotion_pipe,
|
69 |
"text_model": text_model,
|
@@ -79,10 +78,10 @@ def _load_components():
|
|
79 |
# User interface components
|
80 |
##########################################
|
81 |
def _show_interface():
|
82 |
-
"""Render
|
83 |
-
st.title("
|
84 |
-
st.markdown("### I'm listening to you, my friend~")
|
85 |
-
return st.text_area( #
|
86 |
"📝 Enter your comment:",
|
87 |
placeholder="Share your thoughts...",
|
88 |
height=150,
|
@@ -93,39 +92,28 @@ def _show_interface():
|
|
93 |
# Core processing functions
|
94 |
##########################################
|
95 |
def _fast_emotion(text, analyzer):
|
96 |
-
"""Rapid emotion detection with input
|
97 |
-
result = analyzer(text[:256], return_all_scores=True)[0] #
|
98 |
-
|
99 |
-
# Select the emotion from valid ones or default to neutral
|
100 |
return max(
|
101 |
-
(e for e in result if e['label'].lower() in
|
102 |
key=lambda x: x['score'],
|
103 |
default={'label': 'neutral', 'score': 0}
|
104 |
)
|
105 |
|
106 |
def _build_prompt(text, emotion):
|
107 |
-
"""Template-based prompt engineering
|
108 |
-
|
109 |
-
"sadness": "I sensed sadness in your comment: {text}. We are truly sorry and are here to support you.",
|
110 |
-
"joy": "Your comment radiates joy: {text}. Thank you for your bright feedback; we look forward to serving you even better.",
|
111 |
-
"love": "Your message exudes love: {text}. We appreciate your heartfelt words and cherish our connection with you.",
|
112 |
-
"anger": "I understand your comment reflects anger: {text}. Please accept our sincere apologies as we work to resolve your concerns.",
|
113 |
-
"fear": "It seems you feel fear in your comment: {text}. We want to reassure you that your safety and satisfaction are our priority.",
|
114 |
-
"surprise": "Your comment conveys surprise: {text}. We are delighted by your experience and will strive to exceed your expectations.",
|
115 |
-
"neutral": "Thank you for your comment: {text}. We remain committed to providing you with outstanding service."
|
116 |
-
}
|
117 |
-
# Build and return a continuous prompt with the user comment truncated to 200 characters
|
118 |
-
return templates.get(emotion.lower(), templates["neutral"]).format(text=text[:200])
|
119 |
|
120 |
def _generate_response(text, models):
|
121 |
-
"""Optimized text generation pipeline
|
122 |
-
#
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
# Generate text
|
129 |
inputs = models["text_tokenizer"](
|
130 |
prompt,
|
131 |
return_tensors="pt",
|
@@ -133,63 +121,54 @@ def _generate_response(text, models):
|
|
133 |
truncation=True
|
134 |
).to(models["device"])
|
135 |
|
136 |
-
# Generate the response ensuring balanced length (approximately 50-200 tokens)
|
137 |
output = models["text_model"].generate(
|
138 |
inputs.input_ids,
|
139 |
-
max_new_tokens=
|
140 |
-
min_length=50, # Lower bound to ensure completeness
|
141 |
temperature=0.7,
|
142 |
top_p=0.9,
|
143 |
do_sample=True,
|
144 |
pad_token_id=models["text_tokenizer"].eos_token_id
|
145 |
)
|
146 |
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
response = full_text.split("Response:")[-1].strip()
|
151 |
-
print(f"Generated response: {response}") # Debug print using f-string
|
152 |
-
# Return response ensuring it is within 50-200 words (approximation by character length here)
|
153 |
-
return response[:200] # Truncate to 200 characters as an approximation
|
154 |
|
155 |
def _text_to_speech(text, models):
|
156 |
-
"""
|
157 |
-
inputs = models["tts_processor"](
|
158 |
-
text=text[:150], # Limit text length for TTS to 150 characters
|
159 |
-
return_tensors="pt"
|
160 |
-
).to(models["device"])
|
161 |
|
162 |
-
with torch.inference_mode(): #
|
163 |
-
spectrogram = models["tts_model"].generate_speech(
|
164 |
-
inputs["input_ids"],
|
165 |
-
models["speaker_emb"]
|
166 |
-
)
|
167 |
audio = models["tts_vocoder"](spectrogram)
|
168 |
|
169 |
-
sf.write("output.wav", audio.cpu().numpy(), 16000)
|
170 |
return "output.wav"
|
171 |
|
172 |
##########################################
|
173 |
# Main application flow
|
174 |
##########################################
|
175 |
def main():
|
176 |
-
"""Primary execution controller
|
177 |
-
|
178 |
-
|
|
|
|
|
|
|
179 |
|
180 |
-
if user_input:
|
181 |
-
|
182 |
-
|
|
|
|
|
|
|
183 |
st.subheader("📄 Response")
|
184 |
-
st.markdown(
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
st.audio(audio_file, format="audio/wav", start_time=0) # Embed auto-playing audio player
|
191 |
-
print(f"Final generated response: {generated_response}") # Debug output using f-string
|
192 |
|
193 |
-
# Run the main function when the script is executed
|
194 |
if __name__ == "__main__":
|
195 |
-
main() #
|
|
|
2 |
# Step 0: Essential imports
|
3 |
##########################################
|
4 |
import streamlit as st # Web interface
|
5 |
+
from transformers import ( # AI components
|
6 |
pipeline,
|
7 |
SpeechT5Processor,
|
8 |
SpeechT5ForTextToSpeech,
|
|
|
10 |
AutoModelForCausalLM,
|
11 |
AutoTokenizer
|
12 |
)
|
13 |
+
from datasets import load_dataset # Voice data
|
14 |
+
import torch # Tensor operations
|
15 |
+
import soundfile as sf # Audio processing
|
|
|
16 |
|
17 |
##########################################
|
18 |
# Initial configuration (MUST BE FIRST)
|
19 |
##########################################
|
20 |
+
st.set_page_config( # Set page config first
|
21 |
page_title="Just Comment",
|
22 |
page_icon="💬",
|
23 |
layout="centered"
|
|
|
28 |
##########################################
|
29 |
@st.cache_resource(show_spinner=False)
|
30 |
def _load_components():
|
31 |
+
"""Load and cache all models with hardware optimization"""
|
32 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
33 |
+
|
34 |
+
# Emotion classifier (fast)
|
35 |
emotion_pipe = pipeline(
|
36 |
"text-classification",
|
37 |
model="Thea231/jhartmann_emotion_finetuning",
|
38 |
device=device,
|
39 |
truncation=True
|
40 |
)
|
41 |
+
|
42 |
+
# Text generator (optimized)
|
43 |
text_tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen1.5-0.5B")
|
44 |
text_model = AutoModelForCausalLM.from_pretrained(
|
45 |
"Qwen/Qwen1.5-0.5B",
|
46 |
torch_dtype=torch.float16,
|
47 |
device_map="auto"
|
48 |
)
|
49 |
+
|
50 |
# TTS system (accelerated)
|
51 |
tts_processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
52 |
tts_model = SpeechT5ForTextToSpeech.from_pretrained(
|
|
|
57 |
"microsoft/speecht5_hifigan",
|
58 |
torch_dtype=torch.float16
|
59 |
).to(device)
|
60 |
+
|
61 |
+
# Preloaded voice profile
|
62 |
speaker_emb = torch.tensor(
|
63 |
load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")[7306]["xvector"]
|
64 |
).unsqueeze(0).to(device)
|
65 |
+
|
66 |
return {
|
67 |
"emotion": emotion_pipe,
|
68 |
"text_model": text_model,
|
|
|
78 |
# User interface components
|
79 |
##########################################
|
80 |
def _show_interface():
|
81 |
+
"""Render input interface"""
|
82 |
+
st.title("Just Comment")
|
83 |
+
st.markdown("### I'm listening to you, my friend~")
|
84 |
+
return st.text_area( # Input field
|
85 |
"📝 Enter your comment:",
|
86 |
placeholder="Share your thoughts...",
|
87 |
height=150,
|
|
|
92 |
# Core processing functions
|
93 |
##########################################
|
94 |
def _fast_emotion(text, analyzer):
|
95 |
+
"""Rapid emotion detection with input limits"""
|
96 |
+
result = analyzer(text[:256], return_all_scores=True)[0] # Limit input length
|
97 |
+
emotions = ['sadness', 'joy', 'love', 'anger', 'fear', 'surprise']
|
|
|
98 |
return max(
|
99 |
+
(e for e in result if e['label'].lower() in emotions),
|
100 |
key=lambda x: x['score'],
|
101 |
default={'label': 'neutral', 'score': 0}
|
102 |
)
|
103 |
|
104 |
def _build_prompt(text, emotion):
|
105 |
+
"""Template-based prompt engineering for response generation"""
|
106 |
+
return f"{emotion.capitalize()} detected: {text}\nRespond with a coherent and supportive response."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
|
108 |
def _generate_response(text, models):
|
109 |
+
"""Optimized text generation pipeline"""
|
110 |
+
# Emotion detection
|
111 |
+
emotion = _fast_emotion(text, models["emotion"])
|
112 |
+
|
113 |
+
# Prompt construction
|
114 |
+
prompt = _build_prompt(text, emotion["label"])
|
115 |
+
|
116 |
+
# Generate text
|
117 |
inputs = models["text_tokenizer"](
|
118 |
prompt,
|
119 |
return_tensors="pt",
|
|
|
121 |
truncation=True
|
122 |
).to(models["device"])
|
123 |
|
|
|
124 |
output = models["text_model"].generate(
|
125 |
inputs.input_ids,
|
126 |
+
max_new_tokens=100, # Balanced length for response
|
|
|
127 |
temperature=0.7,
|
128 |
top_p=0.9,
|
129 |
do_sample=True,
|
130 |
pad_token_id=models["text_tokenizer"].eos_token_id
|
131 |
)
|
132 |
|
133 |
+
# Process output
|
134 |
+
response = models["text_tokenizer"].decode(output[0], skip_special_tokens=True)
|
135 |
+
return response.strip()[:200] or "Thank you for your feedback."
|
|
|
|
|
|
|
|
|
136 |
|
137 |
def _text_to_speech(text, models):
|
138 |
+
"""High-speed audio synthesis"""
|
139 |
+
inputs = models["tts_processor"](text=text[:150], return_tensors="pt").to(models["device"])
|
|
|
|
|
|
|
140 |
|
141 |
+
with torch.inference_mode(): # Accelerated inference
|
142 |
+
spectrogram = models["tts_model"].generate_speech(inputs["input_ids"], models["speaker_emb"])
|
|
|
|
|
|
|
143 |
audio = models["tts_vocoder"](spectrogram)
|
144 |
|
145 |
+
sf.write("output.wav", audio.cpu().numpy(), 16000)
|
146 |
return "output.wav"
|
147 |
|
148 |
##########################################
|
149 |
# Main application flow
|
150 |
##########################################
|
151 |
def main():
|
152 |
+
"""Primary execution controller"""
|
153 |
+
# Load components
|
154 |
+
components = _load_components()
|
155 |
+
|
156 |
+
# Show interface
|
157 |
+
user_input = _show_interface()
|
158 |
|
159 |
+
if user_input:
|
160 |
+
# Text generation
|
161 |
+
with st.spinner("🔍 Analyzing..."):
|
162 |
+
response = _generate_response(user_input, components)
|
163 |
+
|
164 |
+
# Display result
|
165 |
st.subheader("📄 Response")
|
166 |
+
st.markdown(f"```\n{response}\n```") # f-string formatted
|
167 |
+
|
168 |
+
# Audio generation
|
169 |
+
with st.spinner("🔊 Synthesizing..."):
|
170 |
+
audio_path = _text_to_speech(response, components)
|
171 |
+
st.audio(audio_path, format="audio/wav")
|
|
|
|
|
172 |
|
|
|
173 |
if __name__ == "__main__":
|
174 |
+
main() # Execute the main function
|