joey1101 commited on
Commit
152d61c
·
verified ·
1 Parent(s): 10e464e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +198 -1
app.py CHANGED
@@ -1 +1,198 @@
1
- ########################################## # Step 0: Import required libraries ########################################## import streamlit as st # For building the web application from transformers import ( pipeline, SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan, AutoModelForCausalLM, AutoTokenizer ) # For emotion analysis, text-to-speech, and text generation from datasets import load_dataset # For loading datasets (e.g., speaker embeddings) import torch # For tensor operations import soundfile as sf # For saving audio as .wav files ########################################## # Streamlit application title and input ########################################## st.title("Comment Reply for You") # Application title st.write("Generate automatic replies for user comments") # Application description text = st.text_area("Enter your comment", "") # Text input for user to enter comments ########################################## # Step 1: Sentiment Analysis Function ########################################## def analyze_dominant_emotion(user_review): """ Analyze the dominant emotion in the user's review using a text classification model. """ emotion_classifier = pipeline( "text-classification", model="Thea231/jhartmann_emotion_finetuning", return_all_scores=True ) # Load pre-trained emotion classification model emotion_results = emotion_classifier(user_review)[0] # Get emotion scores for the review dominant_emotion = max(emotion_results, key=lambda x: x['score']) # Find the emotion with the highest confidence return dominant_emotion ########################################## # Step 2: Response Generation Function ########################################## def response_gen(user_review): """ Generate a response based on the sentiment of the user's review. """ # Use Llama-based model to create a response based on a generated prompt dominant_emotion = analyze_dominant_emotion(user_review) # Get the dominant emotion emotion_label = dominant_emotion['label'].lower() # Extract emotion label # Define response templates for each emotion emotion_prompts = { "anger": ( "Customer complaint: '{review}'\n\n" "As a customer service representative, write a response that:\n" "- Sincerely apologizes for the issue\n" "- Explains how the issue will be resolved\n" "- Offers compensation where appropriate\n\n" "Response:" ), "joy": ( "Customer review: '{review}'\n\n" "As a customer service representative, write a positive response that:\n" "- Thanks the customer for their feedback\n" "- Acknowledges both positive and constructive comments\n" "- Invites them to explore loyalty programs\n\n" "Response:" ), # Add other emotions as needed... } # Format the prompt with the user's review prompt = emotion_prompts.get(emotion_label, "Neutral").format(review=user_review) # Load model directly from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen1.5-0.5B") model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen1.5-0.5B") inputs = tokenizer(prompt, return_tensors="pt") # Tokenize the prompt outputs = model.generate(**inputs, max_new_tokens=100) # Generate a response input_length = inputs.input_ids.shape[1] # Length of the input text response = tokenizer.decode(outputs[0][input_length:], skip_special_tokens=True) # Decode the generated text return response ########################################## # Step 3: Text-to-Speech Conversion Function ########################################## def sound_gen(response): """ Convert the generated response to speech and save as a .wav file. """ # Load the pre-trained TTS models processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts") model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts") vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan") # Load speaker embeddings (e.g., neutral female voice) embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0) # Process the input text and generate a spectrogram inputs = processor(text=response, return_tensors="pt") spectrogram = model.generate_speech(inputs["input_ids"], speaker_embeddings) # Use the vocoder to generate a waveform with torch.no_grad(): speech = vocoder(spectrogram) # Save the generated speech as a .wav file sf.write("customer_service_response.wav", speech.numpy(), samplerate=16000) st.audio("customer_service_response.wav") # Play the audio in Streamlit ########################################## # Main Function ########################################## def main(): """ Main function to orchestrate the workflow of sentiment analysis, response generation, and text-to-speech. """ if text: # Check if the user entered a comment response = response_gen(text) # Generate a response st.write(f"Generated response: {response}") # Display the generated response sound_gen(response) # Convert the response to speech and play it # Run the main function if __name__ == "__main__": main()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ##########################################
2
+ # Step 0: Import required libraries
3
+ ##########################################
4
+ import streamlit as st # For building the web application interface
5
+ from transformers import (
6
+ pipeline,
7
+ SpeechT5Processor,
8
+ SpeechT5ForTextToSpeech,
9
+ SpeechT5HifiGan,
10
+ AutoModelForCausalLM,
11
+ AutoTokenizer
12
+ ) # For sentiment analysis, text-to-speech, and text generation
13
+ from datasets import load_dataset # For loading datasets (e.g., speaker embeddings)
14
+ import torch # For tensor operations
15
+ import soundfile as sf # For saving audio as .wav files
16
+ import sentencepiece # Required by SpeechT5Processor for tokenization
17
+
18
+ ##########################################
19
+ # Streamlit application title and input
20
+ ##########################################
21
+ # Display a colorful, large title in a visually appealing font
22
+ st.markdown(
23
+ "<h1 style='text-align: center; color: #FF5720; font-size: 50px;'>Just Comment</h1>",
24
+ unsafe_allow_html=True
25
+ ) # Use HTML and CSS for a custom title design
26
+
27
+ # Display a smaller, gentle subtitle below the title
28
+ st.markdown(
29
+ "<h3 style='text-align: center; color: #5D6D7E; font-style: italic;'>I'm listening to you, my friend</h3>",
30
+ unsafe_allow_html=True
31
+ ) # Use HTML for a friendly and soft-styled subtitle
32
+
33
+ # Add a well-designed text area for user input
34
+ text = st.text_area(
35
+ "Enter your comment",
36
+ placeholder="Type something here...",
37
+ height=150,
38
+ help="Write a comment you would like us to analyze and respond to!" # Provide a helpful tooltip
39
+ )
40
+
41
+ ##########################################
42
+ # Step 1: Sentiment Analysis Function
43
+ ##########################################
44
+ def analyze_dominant_emotion(user_review):
45
+ """
46
+ Analyze the dominant emotion in the user's comment using a fine-tuned text classification model.
47
+ """
48
+ emotion_classifier = pipeline(
49
+ "text-classification",
50
+ model="Thea231/jhartmann_emotion_finetuning",
51
+ return_all_scores=True
52
+ ) # Load the fine-tuned text classification model from Hugging Face
53
+
54
+ emotion_results = emotion_classifier(user_review)[0] # Perform sentiment analysis on the input text
55
+ dominant_emotion = max(emotion_results, key=lambda x: x['score']) # Identify the emotion with the highest confidence
56
+ return dominant_emotion # Return the dominant emotion (label and score)
57
+
58
+ ##########################################
59
+ # Step 2: Response Generation Function
60
+ ##########################################
61
+
62
+
63
+ def response_gen(user_review):
64
+ """
65
+ Generate a concise and logical response based on the sentiment of the user's comment.
66
+ """
67
+ dominant_emotion = analyze_dominant_emotion(user_review) # Get the dominant emotion of the user's comment
68
+ emotion_label = dominant_emotion['label'].lower() # Extract the emotion label in lowercase format
69
+
70
+ # Define response templates for each emotion
71
+ emotion_prompts = {
72
+ "anger": (
73
+ f"'{user_review}'\n\n"
74
+ "As a customer service representative, craft a professional response that:\n"
75
+ "- Begins with sincere apology and acknowledgment\n"
76
+ "- Clearly explains solution process with concrete steps\n"
77
+ "- Offers appropriate compensation/redemption\n"
78
+ "- Keeps tone humble and solution-focused (3-4 sentences)\n\n"
79
+ "Response:"
80
+ ),
81
+ "disgust": (
82
+ f"'{user_review}'\n\n"
83
+ "As a customer service representative, craft a response that:\n"
84
+ "- Immediately acknowledges the product issue\n"
85
+ "- Explains quality control measures being taken\n"
86
+ "- Provides clear return/replacement instructions\n"
87
+ "- Offers goodwill gesture (3-4 sentences)\n\n"
88
+ "Response:"
89
+ ),
90
+ "fear": (
91
+ f"'{user_review}'\n\n"
92
+ "As a customer service representative, craft a reassuring response that:\n"
93
+ "- Directly addresses the safety worries\n"
94
+ "- References relevant certifications/standards\n"
95
+ "- Offers dedicated support contact\n"
96
+ "- Provides satisfaction guarantee (3-4 sentences)\n\n"
97
+ "Response:"
98
+ ),
99
+ "joy": (
100
+ f"'{user_review}'\n\n"
101
+ "As a customer service representative, craft a concise and enthusiastic response that:\n"
102
+ "- Thanks the customer for their feedback\n"
103
+ "- Acknowledges both positive and constructive comments\n"
104
+ "- Invites them to explore loyalty programs\n\n"
105
+ "Response:"
106
+ ),
107
+ "neutral": (
108
+ f"'{user_review}'\n\n"
109
+ "As a customer service representative, craft a balanced response that:\n"
110
+ "- Provides additional relevant product information\n"
111
+ "- Highlights key service features\n"
112
+ "- Politely requests more detailed feedback\n"
113
+ "- Maintains professional tone (3-4 sentences)\n\n"
114
+ "Response:"
115
+ ),
116
+ "sadness": (
117
+ f"'{user_review}'\n\n"
118
+ "As a customer service representative, craft an empathetic response that:\n"
119
+ "- Shows genuine understanding of the issue\n"
120
+ "- Proposes personalized recovery solution\n"
121
+ "- Offers extended support options\n"
122
+ "- Maintains positive outlook (3-4 sentences)\n\n"
123
+ "Response:"
124
+ ),
125
+ "surprise": (
126
+ f"'{user_review}'\n\n"
127
+ "As a customer service representative, craft a response that:\n"
128
+ "- Matches customer's positive energy appropriately\n"
129
+ "- Highlights unexpected product benefits\n"
130
+ "- Invites to user community/events\n"
131
+ "- Maintains brand voice (3-4 sentences)\n\n"
132
+ "Response:"
133
+ )
134
+ }
135
+
136
+ prompt = emotion_prompts.get(
137
+ emotion_label,
138
+ f"Neutral feedback: '{user_review}'\n\nWrite a professional and concise response (50-200 words max).\n\nResponse:"
139
+ ) # Default to neutral if emotion is not found
140
+
141
+ # Load the tokenizer and language model for response generation
142
+ tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen1.5-0.5B") # Load tokenizer for processing text inputs
143
+ model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen1.5-0.5B") # Load language model for response generation
144
+
145
+ inputs = tokenizer(prompt, return_tensors="pt") # Tokenize the input prompt
146
+ outputs = model.generate(
147
+ **inputs,
148
+ max_new_tokens=300,
149
+ min_length=75, # Ensure concise and complete responses
150
+ no_repeat_ngram_size=2, # Avoid repetitive phrases
151
+ temperature=0.7 # Add randomness for more natural responses
152
+ )
153
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True) # Decode the generated response
154
+ return response # Return the response
155
+
156
+ ##########################################
157
+ # Step 3: Text-to-Speech Conversion Function
158
+ ##########################################
159
+ def sound_gen(response):
160
+ """
161
+ Convert the generated response to speech and save it as a .wav file.
162
+ """
163
+ processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts") # Pre-trained processor for TTS
164
+ model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts") # Pre-trained TTS model
165
+ vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan") # Vocoder for generating waveforms
166
+
167
+ # Create speaker embedding to match text input
168
+ embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") # Load speaker embeddings
169
+ speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0) # Use a default embedding
170
+
171
+ inputs = processor(text=response, return_tensors="pt") # Process text for spectrogram generation
172
+ inputs["input_ids"] = inputs["input_ids"].to(torch.int32) # Match tensor format (fix runtime error)
173
+ spectrogram = model.generate_speech(inputs["input_ids"], speaker_embeddings) # Generate the spectrogram
174
+
175
+ with torch.no_grad():
176
+ speech = vocoder(spectrogram) # Convert spectrogram to waveform
177
+
178
+ sf.write("customer_service_response.wav", speech.numpy(), samplerate=16000) # Save as .wav file
179
+ st.audio("customer_service_response.wav", start_time=0) # Embed an auto-playing audio player
180
+
181
+ ##########################################
182
+ # Main Function
183
+ ##########################################
184
+ def main():
185
+ """
186
+ Main function to handle sentiment analysis, response generation, and text-to-speech functionalities.
187
+ """
188
+ if text: # Check if the user has entered a comment
189
+ response = response_gen(text) # Generate the response
190
+ st.markdown(
191
+ f"<p style='color:#3498DB; font-size:20px;'>{response}</p>",
192
+ unsafe_allow_html=True
193
+ ) # Display the response with styled formatting
194
+ sound_gen(response) # Convert the response to speech and play it
195
+
196
+ # Execute the main function
197
+ if __name__ == "__main__":
198
+ main()