joey1101 commited on
Commit
10e464e
·
verified ·
1 Parent(s): 464a6d4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +1 -198
app.py CHANGED
@@ -1,198 +1 @@
1
- ##########################################
2
- # Step 0: Import required libraries
3
- ##########################################
4
- import streamlit as st # For building the web application interface
5
- from transformers import (
6
- pipeline,
7
- SpeechT5Processor,
8
- SpeechT5ForTextToSpeech,
9
- SpeechT5HifiGan,
10
- AutoModelForCausalLM,
11
- AutoTokenizer
12
- ) # For sentiment analysis, text-to-speech, and text generation
13
- from datasets import load_dataset # For loading datasets (e.g., speaker embeddings)
14
- import torch # For tensor operations
15
- import soundfile as sf # For saving audio as .wav files
16
- import sentencepiece # Required by SpeechT5Processor for tokenization
17
-
18
- ##########################################
19
- # Streamlit application title and input
20
- ##########################################
21
- # Display a colorful, large title in a visually appealing font
22
- st.markdown(
23
- "<h1 style='text-align: center; color: #FF5720; font-size: 50px;'>Just Comment</h1>",
24
- unsafe_allow_html=True
25
- ) # Use HTML and CSS for a custom title design
26
-
27
- # Display a smaller, gentle subtitle below the title
28
- st.markdown(
29
- "<h3 style='text-align: center; color: #5D6D7E; font-style: italic;'>I'm listening to you, my friend</h3>",
30
- unsafe_allow_html=True
31
- ) # Use HTML for a friendly and soft-styled subtitle
32
-
33
- # Add a well-designed text area for user input
34
- text = st.text_area(
35
- "Enter your comment",
36
- placeholder="Type something here...",
37
- height=150,
38
- help="Write a comment you would like us to analyze and respond to!" # Provide a helpful tooltip
39
- )
40
-
41
- ##########################################
42
- # Step 1: Sentiment Analysis Function
43
- ##########################################
44
- def analyze_dominant_emotion(user_review):
45
- """
46
- Analyze the dominant emotion in the user's comment using a fine-tuned text classification model.
47
- """
48
- emotion_classifier = pipeline(
49
- "text-classification",
50
- model="Thea231/jhartmann_emotion_finetuning",
51
- return_all_scores=True
52
- ) # Load the fine-tuned text classification model from Hugging Face
53
-
54
- emotion_results = emotion_classifier(user_review)[0] # Perform sentiment analysis on the input text
55
- dominant_emotion = max(emotion_results, key=lambda x: x['score']) # Identify the emotion with the highest confidence
56
- return dominant_emotion # Return the dominant emotion (label and score)
57
-
58
- ##########################################
59
- # Step 2: Response Generation Function
60
- ##########################################
61
-
62
-
63
- def response_gen(user_review):
64
- """
65
- Generate a concise and logical response based on the sentiment of the user's comment.
66
- """
67
- dominant_emotion = analyze_dominant_emotion(user_review) # Get the dominant emotion of the user's comment
68
- emotion_label = dominant_emotion['label'].lower() # Extract the emotion label in lowercase format
69
-
70
- # Define response templates for each emotion
71
- emotion_prompts = {
72
- "anger": (
73
- f"'{user_review}'\n\n"
74
- "As a customer service representative, craft a professional response that:\n"
75
- "- Begins with sincere apology and acknowledgment\n"
76
- "- Clearly explains solution process with concrete steps\n"
77
- "- Offers appropriate compensation/redemption\n"
78
- "- Keeps tone humble and solution-focused (3-4 sentences)\n\n"
79
- "Response:"
80
- ),
81
- "disgust": (
82
- f"'{user_review}'\n\n"
83
- "As a customer service representative, craft a response that:\n"
84
- "- Immediately acknowledges the product issue\n"
85
- "- Explains quality control measures being taken\n"
86
- "- Provides clear return/replacement instructions\n"
87
- "- Offers goodwill gesture (3-4 sentences)\n\n"
88
- "Response:"
89
- ),
90
- "fear": (
91
- f"'{user_review}'\n\n"
92
- "As a customer service representative, craft a reassuring response that:\n"
93
- "- Directly addresses the safety worries\n"
94
- "- References relevant certifications/standards\n"
95
- "- Offers dedicated support contact\n"
96
- "- Provides satisfaction guarantee (3-4 sentences)\n\n"
97
- "Response:"
98
- ),
99
- "joy": (
100
- f"'{user_review}'\n\n"
101
- "As a customer service representative, craft a concise and enthusiastic response that:\n"
102
- "- Thanks the customer for their feedback\n"
103
- "- Acknowledges both positive and constructive comments\n"
104
- "- Invites them to explore loyalty programs\n\n"
105
- "Response:"
106
- ),
107
- "neutral": (
108
- f"'{user_review}'\n\n"
109
- "As a customer service representative, craft a balanced response that:\n"
110
- "- Provides additional relevant product information\n"
111
- "- Highlights key service features\n"
112
- "- Politely requests more detailed feedback\n"
113
- "- Maintains professional tone (3-4 sentences)\n\n"
114
- "Response:"
115
- ),
116
- "sadness": (
117
- f"'{user_review}'\n\n"
118
- "As a customer service representative, craft an empathetic response that:\n"
119
- "- Shows genuine understanding of the issue\n"
120
- "- Proposes personalized recovery solution\n"
121
- "- Offers extended support options\n"
122
- "- Maintains positive outlook (3-4 sentences)\n\n"
123
- "Response:"
124
- ),
125
- "surprise": (
126
- f"'{user_review}'\n\n"
127
- "As a customer service representative, craft a response that:\n"
128
- "- Matches customer's positive energy appropriately\n"
129
- "- Highlights unexpected product benefits\n"
130
- "- Invites to user community/events\n"
131
- "- Maintains brand voice (3-4 sentences)\n\n"
132
- "Response:"
133
- )
134
- }
135
-
136
- prompt = emotion_prompts.get(
137
- emotion_label,
138
- f"Neutral feedback: '{user_review}'\n\nWrite a professional and concise response (50-200 words max).\n\nResponse:"
139
- ) # Default to neutral if emotion is not found
140
-
141
- # Load the tokenizer and language model for response generation
142
- tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen1.5-0.5B") # Load tokenizer for processing text inputs
143
- model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen1.5-0.5B") # Load language model for response generation
144
-
145
- inputs = tokenizer(prompt, return_tensors="pt") # Tokenize the input prompt
146
- outputs = model.generate(
147
- **inputs,
148
- max_new_tokens=300,
149
- min_length=75, # Ensure concise and complete responses
150
- no_repeat_ngram_size=2, # Avoid repetitive phrases
151
- temperature=0.7 # Add randomness for more natural responses
152
- )
153
- response = tokenizer.decode(outputs[0], skip_special_tokens=True) # Decode the generated response
154
- return response # Return the response
155
-
156
- ##########################################
157
- # Step 3: Text-to-Speech Conversion Function
158
- ##########################################
159
- def sound_gen(response):
160
- """
161
- Convert the generated response to speech and save it as a .wav file.
162
- """
163
- processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts") # Pre-trained processor for TTS
164
- model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts") # Pre-trained TTS model
165
- vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan") # Vocoder for generating waveforms
166
-
167
- # Create speaker embedding to match text input
168
- embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") # Load speaker embeddings
169
- speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0) # Use a default embedding
170
-
171
- inputs = processor(text=response, return_tensors="pt") # Process text for spectrogram generation
172
- inputs["input_ids"] = inputs["input_ids"].to(torch.int32) # Match tensor format (fix runtime error)
173
- spectrogram = model.generate_speech(inputs["input_ids"], speaker_embeddings) # Generate the spectrogram
174
-
175
- with torch.no_grad():
176
- speech = vocoder(spectrogram) # Convert spectrogram to waveform
177
-
178
- sf.write("customer_service_response.wav", speech.numpy(), samplerate=16000) # Save as .wav file
179
- st.audio("customer_service_response.wav", start_time=0) # Embed an auto-playing audio player
180
-
181
- ##########################################
182
- # Main Function
183
- ##########################################
184
- def main():
185
- """
186
- Main function to handle sentiment analysis, response generation, and text-to-speech functionalities.
187
- """
188
- if text: # Check if the user has entered a comment
189
- response = response_gen(text) # Generate the response
190
- st.markdown(
191
- f"<p style='color:#3498DB; font-size:20px;'>{response}</p>",
192
- unsafe_allow_html=True
193
- ) # Display the response with styled formatting
194
- sound_gen(response) # Convert the response to speech and play it
195
-
196
- # Execute the main function
197
- if __name__ == "__main__":
198
- main()
 
1
+ ########################################## # Step 0: Import required libraries ########################################## import streamlit as st # For building the web application from transformers import ( pipeline, SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan, AutoModelForCausalLM, AutoTokenizer ) # For emotion analysis, text-to-speech, and text generation from datasets import load_dataset # For loading datasets (e.g., speaker embeddings) import torch # For tensor operations import soundfile as sf # For saving audio as .wav files ########################################## # Streamlit application title and input ########################################## st.title("Comment Reply for You") # Application title st.write("Generate automatic replies for user comments") # Application description text = st.text_area("Enter your comment", "") # Text input for user to enter comments ########################################## # Step 1: Sentiment Analysis Function ########################################## def analyze_dominant_emotion(user_review): """ Analyze the dominant emotion in the user's review using a text classification model. """ emotion_classifier = pipeline( "text-classification", model="Thea231/jhartmann_emotion_finetuning", return_all_scores=True ) # Load pre-trained emotion classification model emotion_results = emotion_classifier(user_review)[0] # Get emotion scores for the review dominant_emotion = max(emotion_results, key=lambda x: x['score']) # Find the emotion with the highest confidence return dominant_emotion ########################################## # Step 2: Response Generation Function ########################################## def response_gen(user_review): """ Generate a response based on the sentiment of the user's review. """ # Use Llama-based model to create a response based on a generated prompt dominant_emotion = analyze_dominant_emotion(user_review) # Get the dominant emotion emotion_label = dominant_emotion['label'].lower() # Extract emotion label # Define response templates for each emotion emotion_prompts = { "anger": ( "Customer complaint: '{review}'\n\n" "As a customer service representative, write a response that:\n" "- Sincerely apologizes for the issue\n" "- Explains how the issue will be resolved\n" "- Offers compensation where appropriate\n\n" "Response:" ), "joy": ( "Customer review: '{review}'\n\n" "As a customer service representative, write a positive response that:\n" "- Thanks the customer for their feedback\n" "- Acknowledges both positive and constructive comments\n" "- Invites them to explore loyalty programs\n\n" "Response:" ), # Add other emotions as needed... } # Format the prompt with the user's review prompt = emotion_prompts.get(emotion_label, "Neutral").format(review=user_review) # Load model directly from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen1.5-0.5B") model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen1.5-0.5B") inputs = tokenizer(prompt, return_tensors="pt") # Tokenize the prompt outputs = model.generate(**inputs, max_new_tokens=100) # Generate a response input_length = inputs.input_ids.shape[1] # Length of the input text response = tokenizer.decode(outputs[0][input_length:], skip_special_tokens=True) # Decode the generated text return response ########################################## # Step 3: Text-to-Speech Conversion Function ########################################## def sound_gen(response): """ Convert the generated response to speech and save as a .wav file. """ # Load the pre-trained TTS models processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts") model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts") vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan") # Load speaker embeddings (e.g., neutral female voice) embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0) # Process the input text and generate a spectrogram inputs = processor(text=response, return_tensors="pt") spectrogram = model.generate_speech(inputs["input_ids"], speaker_embeddings) # Use the vocoder to generate a waveform with torch.no_grad(): speech = vocoder(spectrogram) # Save the generated speech as a .wav file sf.write("customer_service_response.wav", speech.numpy(), samplerate=16000) st.audio("customer_service_response.wav") # Play the audio in Streamlit ########################################## # Main Function ########################################## def main(): """ Main function to orchestrate the workflow of sentiment analysis, response generation, and text-to-speech. """ if text: # Check if the user entered a comment response = response_gen(text) # Generate a response st.write(f"Generated response: {response}") # Display the generated response sound_gen(response) # Convert the response to speech and play it # Run the main function if __name__ == "__main__": main()