SincVAD_Demo / model /modules /TransformerASR.py
jethrowang's picture
Upload 18 files
1423dc8 verified
"""Added ConMamba and Mamba
Authors
* Xilin Jiang 2024
"""
"""Transformer for ASR in the SpeechBrain style.
Authors
* Jianyuan Zhong 2020
* Titouan Parcollet 2024
* Luca Della Libera 2024
"""
from dataclasses import dataclass
from typing import Any, Optional
import torch # noqa 42
from torch import nn
from speechbrain.dataio.dataio import length_to_mask
from modules.Transformer import (
NormalizedEmbedding,
TransformerInterface,
get_key_padding_mask,
get_lookahead_mask,
)
from speechbrain.nnet.activations import Swish
from speechbrain.nnet.containers import ModuleList
from speechbrain.nnet.linear import Linear
from speechbrain.utils.dynamic_chunk_training import DynChunkTrainConfig
@dataclass
class TransformerASRStreamingContext:
"""Streaming metadata and state for a `TransformerASR` instance."""
dynchunktrain_config: DynChunkTrainConfig
"""Dynamic Chunk Training configuration holding chunk size and context size
information."""
encoder_context: Any
"""Opaque encoder context information. It is constructed by the encoder's
`make_streaming_context` method and is passed to the encoder when using
`encode_streaming`.
"""
def make_transformer_src_mask(
src: torch.Tensor,
causal: bool = False,
dynchunktrain_config: Optional[DynChunkTrainConfig] = None,
) -> Optional[torch.Tensor]:
"""Prepare the source transformer mask that restricts which frames can
attend to which frames depending on causal or other simple restricted
attention methods.
Arguments
---------
src: torch.Tensor
The source tensor to build a mask from. The contents of the tensor are
not actually used currently; only its shape and other metadata (e.g.
device).
causal: bool
Whether strict causality shall be used. Frames will not be able to
attend to any future frame.
dynchunktrain_config: DynChunkTrainConfig, optional
Dynamic Chunk Training configuration. This implements a simple form of
chunkwise attention. Incompatible with `causal`.
Returns
-------
torch.Tensor
A boolean mask Tensor of shape (timesteps, timesteps).
"""
if causal:
assert dynchunktrain_config is None
return get_lookahead_mask(src)
if dynchunktrain_config is None:
return
# The following is not really the sole source used to implement this,
# but it helps introduce the concept.
# ref: Unified Streaming and Non-streaming Two-pass End-to-end Model for Speech Recognition
# https://arxiv.org/pdf/2012.05481.pdf
timesteps = src.size(1)
# Mask the future at the right of each chunk
chunk_size = dynchunktrain_config.chunk_size
num_chunks = timesteps // chunk_size
timestep_idx = torch.arange(timesteps, device=src.device)
mask_idx = torch.arange(
chunk_size, chunk_size * (num_chunks + 2), chunk_size, device=src.device
).repeat_interleave(chunk_size)[:timesteps]
src_mask = timestep_idx[None] >= mask_idx[:, None]
# Mask the past at the left of each chunk (accounting for left context)
# only relevant if using left context
if not dynchunktrain_config.is_infinite_left_context():
num_left_chunks = dynchunktrain_config.left_context_size
mask_idx -= chunk_size * (num_left_chunks + 1)
src_mask += timestep_idx[None] < mask_idx[:, None]
return src_mask
def make_transformer_src_tgt_masks(
src,
tgt=None,
wav_len=None,
pad_idx=0,
causal: bool = False,
dynchunktrain_config: Optional[DynChunkTrainConfig] = None,
):
"""This function generates masks for training the transformer model,
opinionated for an ASR context with encoding masks and, optionally, decoding
masks (if specifying `tgt`).
Arguments
---------
src : torch.Tensor
The sequence to the encoder (required).
tgt : torch.Tensor
The sequence to the decoder.
wav_len : torch.Tensor
The lengths of the inputs.
pad_idx : int
The index for <pad> token (default=0).
causal: bool
Whether strict causality shall be used. See `make_asr_src_mask`
dynchunktrain_config: DynChunkTrainConfig, optional
Dynamic Chunk Training configuration. See `make_asr_src_mask`
Returns
-------
src_key_padding_mask : torch.Tensor
Key padding mask for ignoring padding
tgt_key_padding_mask : torch.Tensor
Key padding mask for ignoring padding
src_mask : torch.Tensor
Mask for ignoring invalid (e.g. future) timesteps
tgt_mask : torch.Tensor
Mask for ignoring invalid (e.g. future) timesteps
"""
src_key_padding_mask = None
# mask out audio beyond the length of audio for each batch
if wav_len is not None:
abs_len = torch.round(wav_len * src.shape[1])
src_key_padding_mask = ~length_to_mask(abs_len).bool()
# mask out the source
src_mask = make_transformer_src_mask(
src, causal=causal, dynchunktrain_config=dynchunktrain_config
)
# If no decoder in the transformer...
if tgt is not None:
tgt_key_padding_mask = get_key_padding_mask(tgt, pad_idx=pad_idx)
tgt_mask = get_lookahead_mask(tgt)
else:
tgt_key_padding_mask = None
tgt_mask = None
return src_key_padding_mask, tgt_key_padding_mask, src_mask, tgt_mask
class TransformerASR(TransformerInterface):
"""This is an implementation of transformer model for ASR.
The architecture is based on the paper "Attention Is All You Need":
https://arxiv.org/pdf/1706.03762.pdf
Arguments
---------
tgt_vocab: int
Size of vocabulary.
input_size: int
Input feature size.
d_model : int, optional
Embedding dimension size.
(default=512).
nhead : int, optional
The number of heads in the multi-head attention models (default=8).
num_encoder_layers : int, optional
The number of sub-encoder-layers in the encoder (default=6).
num_decoder_layers : int, optional
The number of sub-decoder-layers in the decoder (default=6).
d_ffn : int, optional
The dimension of the feedforward network model (default=2048).
dropout : int, optional
The dropout value (default=0.1).
activation : torch.nn.Module, optional
The activation function of FFN layers.
Recommended: relu or gelu (default=relu).
positional_encoding: str, optional
Type of positional encoding used. e.g. 'fixed_abs_sine' for fixed absolute positional encodings.
normalize_before: bool, optional
Whether normalization should be applied before or after MHA or FFN in Transformer layers.
Defaults to True as this was shown to lead to better performance and training stability.
kernel_size: int, optional
Kernel size in convolutional layers when Conformer is used.
bias: bool, optional
Whether to use bias in Conformer convolutional layers.
encoder_module: str, optional
Choose between Branchformer, Conformer, ConMamba, and Transformer for the encoder.
decoder_module: str, optional
Choose between Mamba and Transformer for the decoder.
decoder_module: str, optional
Choose between Transformer and Mamba for the decoder.
conformer_activation: torch.nn.Module, optional
Activation module used after Conformer convolutional layers. E.g. Swish, ReLU etc. it has to be a torch Module.
branchformer_activation: torch.nn.Module, optional
Activation module used within the Branchformer Encoder. E.g. Swish, ReLU etc. it has to be a torch Module.
attention_type: str, optional
Type of attention layer used in all Transformer or Conformer layers.
e.g. regularMHA or RelPosMHA.
max_length: int, optional
Max length for the target and source sequence in input.
Used for positional encodings.
causal: bool, optional
Whether the encoder should be causal or not (the decoder is always causal).
If causal the Conformer convolutional layer is causal.
csgu_linear_units: int, optional
Number of neurons in the hidden linear units of the CSGU Module.
-> Branchformer
gate_activation: torch.nn.Module, optional
Activation function used at the gate of the CSGU module.
-> Branchformer
use_linear_after_conv: bool, optional
If True, will apply a linear transformation of size input_size//2.
-> Branchformer
mamba_config: dict, optional
Mamba parameters if encoder_module or decoder_module is Mamba or ConMamba
Example
-------
>>> src = torch.rand([8, 120, 512])
>>> tgt = torch.randint(0, 720, [8, 120])
>>> net = TransformerASR(
... 720, 512, 512, 8, 1, 1, 1024, activation=torch.nn.GELU
... )
>>> enc_out, dec_out = net.forward(src, tgt)
>>> enc_out.shape
torch.Size([8, 120, 512])
>>> dec_out.shape
torch.Size([8, 120, 512])
"""
def __init__(
self,
tgt_vocab,
input_size,
d_model=512,
nhead=8,
num_encoder_layers=6,
num_decoder_layers=6,
d_ffn=2048,
dropout=0.1,
activation=nn.ReLU,
positional_encoding="fixed_abs_sine",
normalize_before=False,
kernel_size: Optional[int] = 31,
bias: Optional[bool] = True,
encoder_module: Optional[str] = "transformer",
decoder_module: Optional[str] = "transformer",
conformer_activation: Optional[nn.Module] = Swish,
branchformer_activation: Optional[nn.Module] = nn.GELU,
attention_type: Optional[str] = "regularMHA",
max_length: Optional[int] = 2500,
causal: Optional[bool] = True,
csgu_linear_units: Optional[int] = 3072,
gate_activation: Optional[nn.Module] = nn.Identity,
use_linear_after_conv: Optional[bool] = False,
mamba_config=None
):
super().__init__(
d_model=d_model,
nhead=nhead,
num_encoder_layers=num_encoder_layers,
num_decoder_layers=num_decoder_layers,
d_ffn=d_ffn,
dropout=dropout,
activation=activation,
positional_encoding=positional_encoding,
normalize_before=normalize_before,
kernel_size=kernel_size,
bias=bias,
encoder_module=encoder_module,
decoder_module=decoder_module,
conformer_activation=conformer_activation,
branchformer_activation=branchformer_activation,
attention_type=attention_type,
max_length=max_length,
causal=causal,
csgu_linear_units=csgu_linear_units,
gate_activation=gate_activation,
use_linear_after_conv=use_linear_after_conv,
mamba_config=mamba_config
)
self.custom_src_module = ModuleList(
Linear(
input_size=input_size,
n_neurons=d_model,
bias=True,
combine_dims=False,
),
torch.nn.Dropout(dropout),
)
self.num_decoder_layers = num_decoder_layers
if num_decoder_layers > 0:
self.custom_tgt_module = ModuleList(
NormalizedEmbedding(d_model, tgt_vocab)
)
# reset parameters using xavier_normal_
self._init_params()
def forward(self, src, tgt, wav_len=None, pad_idx=0):
"""
Arguments
----------
src : torch.Tensor
The sequence to the encoder.
tgt : torch.Tensor
The sequence to the decoder.
wav_len: torch.Tensor, optional
Torch Tensor of shape (batch, ) containing the relative length to padded length for each example.
pad_idx : int, optional
The index for <pad> token (default=0).
"""
# reshape the src vector to [Batch, Time, Fea] is a 4d vector is given
if src.ndim == 4:
bz, t, ch1, ch2 = src.shape
src = src.reshape(bz, t, ch1 * ch2)
(
src_key_padding_mask,
tgt_key_padding_mask,
src_mask,
tgt_mask,
) = make_transformer_src_tgt_masks(
src, tgt, wav_len, causal=self.causal, pad_idx=pad_idx
)
src = self.custom_src_module(src)
# add pos encoding to queries if are sinusoidal ones else
if self.attention_type == "hypermixing":
pos_embs_encoder = None
elif self.attention_type == "RelPosMHAXL":
pos_embs_encoder = self.positional_encoding(src)
elif self.positional_encoding_type == "fixed_abs_sine":
src = src + self.positional_encoding(src) # add the encodings here
pos_embs_encoder = None
encoder_out, _ = self.encoder(
src=src,
src_mask=src_mask,
src_key_padding_mask=src_key_padding_mask,
pos_embs=pos_embs_encoder,
)
if self.num_decoder_layers > 0:
tgt = self.custom_tgt_module(tgt)
if self.attention_type == "RelPosMHAXL":
tgt = tgt + self.positional_encoding_decoder(tgt)
pos_embs_encoder = None # self.positional_encoding(src)
pos_embs_target = None
elif (
self.positional_encoding_type == "fixed_abs_sine"
or self.attention_type == "hypermixing"
):
tgt = tgt + self.positional_encoding(tgt)
pos_embs_target = None
pos_embs_encoder = None
decoder_out, _, _ = self.decoder(
tgt=tgt,
memory=encoder_out,
memory_mask=None,
tgt_mask=tgt_mask,
tgt_key_padding_mask=tgt_key_padding_mask,
memory_key_padding_mask=src_key_padding_mask,
pos_embs_tgt=pos_embs_target,
pos_embs_src=pos_embs_encoder,
)
else:
decoder_out = None
return encoder_out, decoder_out
@torch.no_grad()
def decode(self, tgt, encoder_out, enc_len=None):
"""This method implements a decoding step for the transformer model.
Arguments
---------
tgt : torch.Tensor
The sequence to the decoder.
encoder_out : torch.Tensor
Hidden output of the encoder.
enc_len : torch.LongTensor
The actual length of encoder states.
Returns
-------
prediction
"""
tgt_mask = get_lookahead_mask(tgt)
src_key_padding_mask = None
if enc_len is not None:
src_key_padding_mask = (1 - length_to_mask(enc_len)).bool()
if self.num_decoder_layers > 0:
tgt = self.custom_tgt_module(tgt)
if self.attention_type == "RelPosMHAXL":
tgt = tgt + self.positional_encoding_decoder(tgt)
pos_embs_encoder = None # self.positional_encoding(src)
pos_embs_target = None
elif (
self.positional_encoding_type == "fixed_abs_sine"
or self.attention_type == "hypermixing"
):
tgt = tgt + self.positional_encoding(tgt) # add the encodings here
pos_embs_target = None
pos_embs_encoder = None
prediction, self_attns, multihead_attns = self.decoder(
tgt,
encoder_out,
tgt_mask=tgt_mask,
memory_key_padding_mask=src_key_padding_mask,
pos_embs_tgt=pos_embs_target,
pos_embs_src=pos_embs_encoder,
)
return prediction, multihead_attns[-1]
def encode(
self,
src,
wav_len=None,
pad_idx=0,
dynchunktrain_config: Optional[DynChunkTrainConfig] = None,
):
"""
Encoder forward pass
Arguments
---------
src : torch.Tensor
The sequence to the encoder.
wav_len : torch.Tensor, optional
Torch Tensor of shape (batch, ) containing the relative length to padded length for each example.
pad_idx : int
The index used for padding.
dynchunktrain_config : DynChunkTrainConfig
Dynamic chunking config.
Returns
-------
encoder_out : torch.Tensor
"""
# reshape the src vector to [Batch, Time, Fea] if a 4d vector is given
if src.dim() == 4:
bz, t, ch1, ch2 = src.shape
src = src.reshape(bz, t, ch1 * ch2)
(
src_key_padding_mask,
_,
src_mask,
_,
) = make_transformer_src_tgt_masks(
src,
None,
wav_len,
pad_idx=pad_idx,
causal=self.causal,
dynchunktrain_config=dynchunktrain_config,
)
src = self.custom_src_module(src)
if self.attention_type == "hypermixing":
pos_embs_source = None
elif self.attention_type == "RelPosMHAXL":
pos_embs_source = self.positional_encoding(src)
elif self.positional_encoding_type == "fixed_abs_sine":
src = src + self.positional_encoding(src)
pos_embs_source = None
encoder_out, _ = self.encoder(
src=src,
src_mask=src_mask,
src_key_padding_mask=src_key_padding_mask,
pos_embs=pos_embs_source,
dynchunktrain_config=dynchunktrain_config,
)
return encoder_out
def encode_streaming(self, src, context: TransformerASRStreamingContext):
"""
Streaming encoder forward pass
Arguments
---------
src : torch.Tensor
The sequence (chunk) to the encoder.
context : TransformerASRStreamingContext
Mutable reference to the streaming context. This holds the state
needed to persist across chunk inferences and can be built using
`make_streaming_context`. This will get mutated by this function.
Returns
-------
Encoder output for this chunk.
Example
-------
>>> import torch
>>> from speechbrain.lobes.models.transformer.TransformerASR import TransformerASR
>>> from speechbrain.utils.dynamic_chunk_training import DynChunkTrainConfig
>>> net = TransformerASR(
... tgt_vocab=100,
... input_size=64,
... d_model=64,
... nhead=8,
... num_encoder_layers=1,
... num_decoder_layers=0,
... d_ffn=128,
... attention_type="RelPosMHAXL",
... positional_encoding=None,
... encoder_module="conformer",
... normalize_before=True,
... causal=False,
... )
>>> ctx = net.make_streaming_context(DynChunkTrainConfig(16, 1))
>>> src1 = torch.rand([8, 16, 64])
>>> src2 = torch.rand([8, 16, 64])
>>> out1 = net.encode_streaming(src1, ctx)
>>> out1.shape
torch.Size([8, 16, 64])
>>> ctx.encoder_context.layers[0].mha_left_context.shape
torch.Size([8, 16, 64])
>>> out2 = net.encode_streaming(src2, ctx)
>>> out2.shape
torch.Size([8, 16, 64])
>>> ctx.encoder_context.layers[0].mha_left_context.shape
torch.Size([8, 16, 64])
>>> combined_out = torch.concat((out1, out2), dim=1)
>>> combined_out.shape
torch.Size([8, 32, 64])
"""
if src.dim() == 4:
bz, t, ch1, ch2 = src.shape
src = src.reshape(bz, t, ch1 * ch2)
# HACK: our problem here is that the positional_encoding is computed
# against the size of our source tensor, but we only know how many left
# context frames we're injecting to the encoder within the encoder
# context.
# so this workaround does just that.
#
# i'm not sure how this would be best refactored, but an option would be
# to let the encoder get the pos embedding itself and have a way to
# cache it.
#
# additionally, positional encoding functions take in a whole source
# tensor just to get its attributes (size, device, type) but this is
# sort of silly for the embeddings that don't need one.
# so we craft a dummy empty (uninitialized) tensor to help...
known_left_context = context.encoder_context.layers[0].mha_left_context
if known_left_context is None:
pos_encoding_dummy = src
else:
target_shape = list(src.shape)
target_shape[-2] += known_left_context.shape[-2]
pos_encoding_dummy = torch.empty(size=target_shape).to(src)
src = self.custom_src_module(src)
if self.attention_type == "RelPosMHAXL":
pos_embs_source = self.positional_encoding(pos_encoding_dummy)
elif self.positional_encoding_type == "fixed_abs_sine":
src = src + self.positional_encoding(pos_encoding_dummy)
pos_embs_source = None
encoder_out, _ = self.encoder.forward_streaming(
src=src, pos_embs=pos_embs_source, context=context.encoder_context
)
return encoder_out
def make_streaming_context(
self, dynchunktrain_config: DynChunkTrainConfig, encoder_kwargs={}
):
"""Creates a blank streaming context for this transformer and its
encoder.
Arguments
---------
dynchunktrain_config : DynChunkTrainConfig
Runtime chunkwise attention configuration.
encoder_kwargs : dict
Parameters to be forward to the encoder's `make_streaming_context`.
Metadata required for the encoder could differ depending on the
encoder.
Returns
-------
TransformerASRStreamingContext
"""
return TransformerASRStreamingContext(
dynchunktrain_config=dynchunktrain_config,
encoder_context=self.encoder.make_streaming_context(
dynchunktrain_config,
**encoder_kwargs,
),
)
def _init_params(self):
for p in self.parameters():
if p.dim() > 1:
torch.nn.init.xavier_normal_(p)
class EncoderWrapper(nn.Module):
"""This is a wrapper of any ASR transformer encoder. By default, the
TransformerASR .forward() function encodes and decodes. With this wrapper
the .forward() function becomes .encode() only.
Important: The TransformerASR class must contain a .encode() function.
Arguments
---------
transformer : sb.lobes.models.TransformerInterface
A Transformer instance that contains a .encode() function.
*args : tuple
**kwargs : dict
Arguments to forward to parent class.
Example
-------
>>> src = torch.rand([8, 120, 512])
>>> tgt = torch.randint(0, 720, [8, 120])
>>> net = TransformerASR(
... 720, 512, 512, 8, 1, 1, 1024, activation=torch.nn.GELU
... )
>>> encoder = EncoderWrapper(net)
>>> enc_out = encoder(src)
>>> enc_out.shape
torch.Size([8, 120, 512])
"""
def __init__(self, transformer, *args, **kwargs):
super().__init__(*args, **kwargs)
self.transformer = transformer
self.make_streaming_context = self.transformer.make_streaming_context
def forward(self, x, wav_lens=None, pad_idx=0, **kwargs):
"""Processes the input tensor x and returns an output tensor."""
x = self.transformer.encode(x, wav_lens, pad_idx, **kwargs)
return x
def forward_streaming(self, x, context):
"""Processes the input audio chunk tensor `x`, using and updating the
mutable encoder `context`"""
x = self.transformer.encode_streaming(x, context)
return x
def make_streaming_context(self, *args, **kwargs):
"""Initializes a streaming context. Forwards all arguments to the
underlying transformer. See :meth:`speechbrain.lobes.models.transformer.TransformerASR.make_streaming_context`.
"""
return self.transformer.make_streaming_context(*args, **kwargs)