File size: 24,379 Bytes
1423dc8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
"""Added ConMamba and Mamba

Authors
* Xilin Jiang 2024
"""

"""Transformer for ASR in the SpeechBrain style.

Authors
* Jianyuan Zhong 2020
* Titouan Parcollet 2024
* Luca Della Libera 2024
"""

from dataclasses import dataclass
from typing import Any, Optional

import torch  # noqa 42
from torch import nn

from speechbrain.dataio.dataio import length_to_mask
from modules.Transformer import (
    NormalizedEmbedding,
    TransformerInterface,
    get_key_padding_mask,
    get_lookahead_mask,
)
from speechbrain.nnet.activations import Swish
from speechbrain.nnet.containers import ModuleList
from speechbrain.nnet.linear import Linear
from speechbrain.utils.dynamic_chunk_training import DynChunkTrainConfig


@dataclass
class TransformerASRStreamingContext:
    """Streaming metadata and state for a `TransformerASR` instance."""

    dynchunktrain_config: DynChunkTrainConfig
    """Dynamic Chunk Training configuration holding chunk size and context size
    information."""

    encoder_context: Any
    """Opaque encoder context information. It is constructed by the encoder's
    `make_streaming_context` method and is passed to the encoder when using
    `encode_streaming`.
    """


def make_transformer_src_mask(
    src: torch.Tensor,
    causal: bool = False,
    dynchunktrain_config: Optional[DynChunkTrainConfig] = None,
) -> Optional[torch.Tensor]:
    """Prepare the source transformer mask that restricts which frames can
    attend to which frames depending on causal or other simple restricted
    attention methods.

    Arguments
    ---------
    src: torch.Tensor
        The source tensor to build a mask from. The contents of the tensor are
        not actually used currently; only its shape and other metadata (e.g.
        device).
    causal: bool
        Whether strict causality shall be used. Frames will not be able to
        attend to any future frame.
    dynchunktrain_config: DynChunkTrainConfig, optional
        Dynamic Chunk Training configuration. This implements a simple form of
        chunkwise attention. Incompatible with `causal`.

    Returns
    -------
    torch.Tensor
        A boolean mask Tensor of shape (timesteps, timesteps).
    """
    if causal:
        assert dynchunktrain_config is None
        return get_lookahead_mask(src)

    if dynchunktrain_config is None:
        return

    # The following is not really the sole source used to implement this,
    # but it helps introduce the concept.
    # ref: Unified Streaming and Non-streaming Two-pass End-to-end Model for Speech Recognition
    # https://arxiv.org/pdf/2012.05481.pdf
    timesteps = src.size(1)

    # Mask the future at the right of each chunk
    chunk_size = dynchunktrain_config.chunk_size
    num_chunks = timesteps // chunk_size
    timestep_idx = torch.arange(timesteps, device=src.device)
    mask_idx = torch.arange(
        chunk_size, chunk_size * (num_chunks + 2), chunk_size, device=src.device
    ).repeat_interleave(chunk_size)[:timesteps]
    src_mask = timestep_idx[None] >= mask_idx[:, None]

    # Mask the past at the left of each chunk (accounting for left context)
    # only relevant if using left context
    if not dynchunktrain_config.is_infinite_left_context():
        num_left_chunks = dynchunktrain_config.left_context_size
        mask_idx -= chunk_size * (num_left_chunks + 1)
        src_mask += timestep_idx[None] < mask_idx[:, None]

    return src_mask


def make_transformer_src_tgt_masks(
    src,
    tgt=None,
    wav_len=None,
    pad_idx=0,
    causal: bool = False,
    dynchunktrain_config: Optional[DynChunkTrainConfig] = None,
):
    """This function generates masks for training the transformer model,
    opinionated for an ASR context with encoding masks and, optionally, decoding
    masks (if specifying `tgt`).

    Arguments
    ---------
    src : torch.Tensor
        The sequence to the encoder (required).
    tgt : torch.Tensor
        The sequence to the decoder.
    wav_len : torch.Tensor
        The lengths of the inputs.
    pad_idx : int
        The index for <pad> token (default=0).
    causal: bool
        Whether strict causality shall be used. See `make_asr_src_mask`
    dynchunktrain_config: DynChunkTrainConfig, optional
        Dynamic Chunk Training configuration. See `make_asr_src_mask`

    Returns
    -------
    src_key_padding_mask : torch.Tensor
        Key padding mask for ignoring padding
    tgt_key_padding_mask : torch.Tensor
        Key padding mask for ignoring padding
    src_mask : torch.Tensor
        Mask for ignoring invalid (e.g. future) timesteps
    tgt_mask : torch.Tensor
        Mask for ignoring invalid (e.g. future) timesteps
    """
    src_key_padding_mask = None

    # mask out audio beyond the length of audio for each batch
    if wav_len is not None:
        abs_len = torch.round(wav_len * src.shape[1])
        src_key_padding_mask = ~length_to_mask(abs_len).bool()

    # mask out the source
    src_mask = make_transformer_src_mask(
        src, causal=causal, dynchunktrain_config=dynchunktrain_config
    )

    # If no decoder in the transformer...
    if tgt is not None:
        tgt_key_padding_mask = get_key_padding_mask(tgt, pad_idx=pad_idx)
        tgt_mask = get_lookahead_mask(tgt)
    else:
        tgt_key_padding_mask = None
        tgt_mask = None

    return src_key_padding_mask, tgt_key_padding_mask, src_mask, tgt_mask


class TransformerASR(TransformerInterface):
    """This is an implementation of transformer model for ASR.

    The architecture is based on the paper "Attention Is All You Need":
    https://arxiv.org/pdf/1706.03762.pdf

    Arguments
    ---------
    tgt_vocab: int
        Size of vocabulary.
    input_size: int
        Input feature size.
    d_model : int, optional
        Embedding dimension size.
        (default=512).
    nhead : int, optional
        The number of heads in the multi-head attention models (default=8).
    num_encoder_layers : int, optional
        The number of sub-encoder-layers in the encoder (default=6).
    num_decoder_layers : int, optional
        The number of sub-decoder-layers in the decoder (default=6).
    d_ffn : int, optional
        The dimension of the feedforward network model (default=2048).
    dropout : int, optional
        The dropout value (default=0.1).
    activation : torch.nn.Module, optional
        The activation function of FFN layers.
        Recommended: relu or gelu (default=relu).
    positional_encoding: str, optional
        Type of positional encoding used. e.g. 'fixed_abs_sine' for fixed absolute positional encodings.
    normalize_before: bool, optional
        Whether normalization should be applied before or after MHA or FFN in Transformer layers.
        Defaults to True as this was shown to lead to better performance and training stability.
    kernel_size: int, optional
        Kernel size in convolutional layers when Conformer is used.
    bias: bool, optional
        Whether to use bias in Conformer convolutional layers.
    encoder_module: str, optional
        Choose between Branchformer, Conformer, ConMamba, and Transformer for the encoder.
    decoder_module: str, optional
        Choose between Mamba and Transformer for the decoder.
    decoder_module: str, optional
        Choose between Transformer and Mamba for the decoder. 
    conformer_activation: torch.nn.Module, optional
        Activation module used after Conformer convolutional layers. E.g. Swish, ReLU etc. it has to be a torch Module.
    branchformer_activation: torch.nn.Module, optional
        Activation module used within the Branchformer Encoder. E.g. Swish, ReLU etc. it has to be a torch Module.
    attention_type: str, optional
        Type of attention layer used in all Transformer or Conformer layers.
        e.g. regularMHA or RelPosMHA.
    max_length: int, optional
        Max length for the target and source sequence in input.
        Used for positional encodings.
    causal: bool, optional
        Whether the encoder should be causal or not (the decoder is always causal).
        If causal the Conformer convolutional layer is causal.
    csgu_linear_units: int, optional
        Number of neurons in the hidden linear units of the CSGU Module.
        -> Branchformer
    gate_activation: torch.nn.Module, optional
        Activation function used at the gate of the CSGU module.
        -> Branchformer
    use_linear_after_conv: bool, optional
        If True, will apply a linear transformation of size input_size//2.
        -> Branchformer
    mamba_config: dict, optional
        Mamba parameters if encoder_module or decoder_module is Mamba or ConMamba

    Example
    -------
    >>> src = torch.rand([8, 120, 512])
    >>> tgt = torch.randint(0, 720, [8, 120])
    >>> net = TransformerASR(
    ...     720, 512, 512, 8, 1, 1, 1024, activation=torch.nn.GELU
    ... )
    >>> enc_out, dec_out = net.forward(src, tgt)
    >>> enc_out.shape
    torch.Size([8, 120, 512])
    >>> dec_out.shape
    torch.Size([8, 120, 512])
    """

    def __init__(
        self,
        tgt_vocab,
        input_size,
        d_model=512,
        nhead=8,
        num_encoder_layers=6,
        num_decoder_layers=6,
        d_ffn=2048,
        dropout=0.1,
        activation=nn.ReLU,
        positional_encoding="fixed_abs_sine",
        normalize_before=False,
        kernel_size: Optional[int] = 31,
        bias: Optional[bool] = True,
        encoder_module: Optional[str] = "transformer",
        decoder_module: Optional[str] = "transformer",
        conformer_activation: Optional[nn.Module] = Swish,
        branchformer_activation: Optional[nn.Module] = nn.GELU,
        attention_type: Optional[str] = "regularMHA",
        max_length: Optional[int] = 2500,
        causal: Optional[bool] = True,
        csgu_linear_units: Optional[int] = 3072,
        gate_activation: Optional[nn.Module] = nn.Identity,
        use_linear_after_conv: Optional[bool] = False,
        mamba_config=None
    ):
        super().__init__(
            d_model=d_model,
            nhead=nhead,
            num_encoder_layers=num_encoder_layers,
            num_decoder_layers=num_decoder_layers,
            d_ffn=d_ffn,
            dropout=dropout,
            activation=activation,
            positional_encoding=positional_encoding,
            normalize_before=normalize_before,
            kernel_size=kernel_size,
            bias=bias,
            encoder_module=encoder_module,
            decoder_module=decoder_module,
            conformer_activation=conformer_activation,
            branchformer_activation=branchformer_activation,
            attention_type=attention_type,
            max_length=max_length,
            causal=causal,
            csgu_linear_units=csgu_linear_units,
            gate_activation=gate_activation,
            use_linear_after_conv=use_linear_after_conv,
            mamba_config=mamba_config
        )

        self.custom_src_module = ModuleList(
            Linear(
                input_size=input_size,
                n_neurons=d_model,
                bias=True,
                combine_dims=False,
            ),
            torch.nn.Dropout(dropout),
        )

        self.num_decoder_layers = num_decoder_layers
        if num_decoder_layers > 0:
            self.custom_tgt_module = ModuleList(
                NormalizedEmbedding(d_model, tgt_vocab)
            )

        # reset parameters using xavier_normal_
        self._init_params()

    def forward(self, src, tgt, wav_len=None, pad_idx=0):
        """
        Arguments
        ----------
        src : torch.Tensor
            The sequence to the encoder.
        tgt : torch.Tensor
            The sequence to the decoder.
        wav_len: torch.Tensor, optional
            Torch Tensor of shape (batch, ) containing the relative length to padded length for each example.
        pad_idx : int, optional
            The index for <pad> token (default=0).
        """

        # reshape the src vector to [Batch, Time, Fea] is a 4d vector is given
        if src.ndim == 4:
            bz, t, ch1, ch2 = src.shape
            src = src.reshape(bz, t, ch1 * ch2)

        (
            src_key_padding_mask,
            tgt_key_padding_mask,
            src_mask,
            tgt_mask,
        ) = make_transformer_src_tgt_masks(
            src, tgt, wav_len, causal=self.causal, pad_idx=pad_idx
        )
        
        src = self.custom_src_module(src)
        # add pos encoding to queries if are sinusoidal ones else
        if self.attention_type == "hypermixing":
            pos_embs_encoder = None
        elif self.attention_type == "RelPosMHAXL":
            pos_embs_encoder = self.positional_encoding(src)
        elif self.positional_encoding_type == "fixed_abs_sine":
            src = src + self.positional_encoding(src)  # add the encodings here
            pos_embs_encoder = None

        encoder_out, _ = self.encoder(
            src=src,
            src_mask=src_mask,
            src_key_padding_mask=src_key_padding_mask,
            pos_embs=pos_embs_encoder,
        )

        if self.num_decoder_layers > 0:
            tgt = self.custom_tgt_module(tgt)

            if self.attention_type == "RelPosMHAXL":
                tgt = tgt + self.positional_encoding_decoder(tgt)
                pos_embs_encoder = None  # self.positional_encoding(src)
                pos_embs_target = None
            elif (
                self.positional_encoding_type == "fixed_abs_sine"
                or self.attention_type == "hypermixing"
            ):
                tgt = tgt + self.positional_encoding(tgt)
                pos_embs_target = None
                pos_embs_encoder = None

            decoder_out, _, _ = self.decoder(
                tgt=tgt,
                memory=encoder_out,
                memory_mask=None,
                tgt_mask=tgt_mask,
                tgt_key_padding_mask=tgt_key_padding_mask,
                memory_key_padding_mask=src_key_padding_mask,
                pos_embs_tgt=pos_embs_target,
                pos_embs_src=pos_embs_encoder,
            )

        else:
            decoder_out = None

        return encoder_out, decoder_out

    @torch.no_grad()
    def decode(self, tgt, encoder_out, enc_len=None):
        """This method implements a decoding step for the transformer model.

        Arguments
        ---------
        tgt : torch.Tensor
            The sequence to the decoder.
        encoder_out : torch.Tensor
            Hidden output of the encoder.
        enc_len : torch.LongTensor
            The actual length of encoder states.

        Returns
        -------
        prediction
        """
        tgt_mask = get_lookahead_mask(tgt)
        src_key_padding_mask = None
        if enc_len is not None:
            src_key_padding_mask = (1 - length_to_mask(enc_len)).bool()

        if self.num_decoder_layers > 0:
            tgt = self.custom_tgt_module(tgt)
        if self.attention_type == "RelPosMHAXL":
            tgt = tgt + self.positional_encoding_decoder(tgt)
            pos_embs_encoder = None  # self.positional_encoding(src)
            pos_embs_target = None
        elif (
            self.positional_encoding_type == "fixed_abs_sine"
            or self.attention_type == "hypermixing"
        ):
            tgt = tgt + self.positional_encoding(tgt)  # add the encodings here
            pos_embs_target = None
            pos_embs_encoder = None

   
        prediction, self_attns, multihead_attns = self.decoder(
            tgt,
            encoder_out,
            tgt_mask=tgt_mask,
            memory_key_padding_mask=src_key_padding_mask,
            pos_embs_tgt=pos_embs_target,
            pos_embs_src=pos_embs_encoder,
        )
        return prediction, multihead_attns[-1]

    def encode(
        self,
        src,
        wav_len=None,
        pad_idx=0,
        dynchunktrain_config: Optional[DynChunkTrainConfig] = None,
    ):
        """
        Encoder forward pass

        Arguments
        ---------
        src : torch.Tensor
            The sequence to the encoder.
        wav_len : torch.Tensor, optional
            Torch Tensor of shape (batch, ) containing the relative length to padded length for each example.
        pad_idx : int
            The index used for padding.
        dynchunktrain_config : DynChunkTrainConfig
            Dynamic chunking config.

        Returns
        -------
        encoder_out : torch.Tensor
        """
        # reshape the src vector to [Batch, Time, Fea] if a 4d vector is given
        if src.dim() == 4:
            bz, t, ch1, ch2 = src.shape
            src = src.reshape(bz, t, ch1 * ch2)

        (
            src_key_padding_mask,
            _,
            src_mask,
            _,
        ) = make_transformer_src_tgt_masks(
            src,
            None,
            wav_len,
            pad_idx=pad_idx,
            causal=self.causal,
            dynchunktrain_config=dynchunktrain_config,
        )

        src = self.custom_src_module(src)
        if self.attention_type == "hypermixing":
            pos_embs_source = None
        elif self.attention_type == "RelPosMHAXL":
            pos_embs_source = self.positional_encoding(src)
        elif self.positional_encoding_type == "fixed_abs_sine":
            src = src + self.positional_encoding(src)
            pos_embs_source = None

        encoder_out, _ = self.encoder(
            src=src,
            src_mask=src_mask,
            src_key_padding_mask=src_key_padding_mask,
            pos_embs=pos_embs_source,
            dynchunktrain_config=dynchunktrain_config,
        )

        return encoder_out

    def encode_streaming(self, src, context: TransformerASRStreamingContext):
        """
        Streaming encoder forward pass

        Arguments
        ---------
        src : torch.Tensor
            The sequence (chunk) to the encoder.
        context : TransformerASRStreamingContext
            Mutable reference to the streaming context. This holds the state
            needed to persist across chunk inferences and can be built using
            `make_streaming_context`. This will get mutated by this function.

        Returns
        -------
        Encoder output for this chunk.

        Example
        -------
        >>> import torch
        >>> from speechbrain.lobes.models.transformer.TransformerASR import TransformerASR
        >>> from speechbrain.utils.dynamic_chunk_training import DynChunkTrainConfig
        >>> net = TransformerASR(
        ...     tgt_vocab=100,
        ...     input_size=64,
        ...     d_model=64,
        ...     nhead=8,
        ...     num_encoder_layers=1,
        ...     num_decoder_layers=0,
        ...     d_ffn=128,
        ...     attention_type="RelPosMHAXL",
        ...     positional_encoding=None,
        ...     encoder_module="conformer",
        ...     normalize_before=True,
        ...     causal=False,
        ... )
        >>> ctx = net.make_streaming_context(DynChunkTrainConfig(16, 1))
        >>> src1 = torch.rand([8, 16, 64])
        >>> src2 = torch.rand([8, 16, 64])
        >>> out1 = net.encode_streaming(src1, ctx)
        >>> out1.shape
        torch.Size([8, 16, 64])
        >>> ctx.encoder_context.layers[0].mha_left_context.shape
        torch.Size([8, 16, 64])
        >>> out2 = net.encode_streaming(src2, ctx)
        >>> out2.shape
        torch.Size([8, 16, 64])
        >>> ctx.encoder_context.layers[0].mha_left_context.shape
        torch.Size([8, 16, 64])
        >>> combined_out = torch.concat((out1, out2), dim=1)
        >>> combined_out.shape
        torch.Size([8, 32, 64])
        """

        if src.dim() == 4:
            bz, t, ch1, ch2 = src.shape
            src = src.reshape(bz, t, ch1 * ch2)

        # HACK: our problem here is that the positional_encoding is computed
        # against the size of our source tensor, but we only know how many left
        # context frames we're injecting to the encoder within the encoder
        # context.
        # so this workaround does just that.
        #
        # i'm not sure how this would be best refactored, but an option would be
        # to let the encoder get the pos embedding itself and have a way to
        # cache it.
        #
        # additionally, positional encoding functions take in a whole source
        # tensor just to get its attributes (size, device, type) but this is
        # sort of silly for the embeddings that don't need one.
        # so we craft a dummy empty (uninitialized) tensor to help...
        known_left_context = context.encoder_context.layers[0].mha_left_context
        if known_left_context is None:
            pos_encoding_dummy = src
        else:
            target_shape = list(src.shape)
            target_shape[-2] += known_left_context.shape[-2]
            pos_encoding_dummy = torch.empty(size=target_shape).to(src)

        src = self.custom_src_module(src)
        if self.attention_type == "RelPosMHAXL":
            pos_embs_source = self.positional_encoding(pos_encoding_dummy)

        elif self.positional_encoding_type == "fixed_abs_sine":
            src = src + self.positional_encoding(pos_encoding_dummy)
            pos_embs_source = None

        encoder_out, _ = self.encoder.forward_streaming(
            src=src, pos_embs=pos_embs_source, context=context.encoder_context
        )
        return encoder_out

    def make_streaming_context(
        self, dynchunktrain_config: DynChunkTrainConfig, encoder_kwargs={}
    ):
        """Creates a blank streaming context for this transformer and its
        encoder.

        Arguments
        ---------
        dynchunktrain_config : DynChunkTrainConfig
            Runtime chunkwise attention configuration.
        encoder_kwargs : dict
            Parameters to be forward to the encoder's `make_streaming_context`.
            Metadata required for the encoder could differ depending on the
            encoder.

        Returns
        -------
        TransformerASRStreamingContext
        """
        return TransformerASRStreamingContext(
            dynchunktrain_config=dynchunktrain_config,
            encoder_context=self.encoder.make_streaming_context(
                dynchunktrain_config,
                **encoder_kwargs,
            ),
        )

    def _init_params(self):
        for p in self.parameters():
            if p.dim() > 1:
                torch.nn.init.xavier_normal_(p)


class EncoderWrapper(nn.Module):
    """This is a wrapper of any ASR transformer encoder. By default, the
    TransformerASR .forward() function encodes and decodes. With this wrapper
    the .forward() function becomes .encode() only.

    Important: The TransformerASR class must contain a .encode() function.

    Arguments
    ---------
    transformer : sb.lobes.models.TransformerInterface
        A Transformer instance that contains a .encode() function.
    *args : tuple
    **kwargs : dict
        Arguments to forward to parent class.

    Example
    -------
    >>> src = torch.rand([8, 120, 512])
    >>> tgt = torch.randint(0, 720, [8, 120])
    >>> net = TransformerASR(
    ...     720, 512, 512, 8, 1, 1, 1024, activation=torch.nn.GELU
    ... )
    >>> encoder = EncoderWrapper(net)
    >>> enc_out = encoder(src)
    >>> enc_out.shape
    torch.Size([8, 120, 512])
    """

    def __init__(self, transformer, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.transformer = transformer
        self.make_streaming_context = self.transformer.make_streaming_context

    def forward(self, x, wav_lens=None, pad_idx=0, **kwargs):
        """Processes the input tensor x and returns an output tensor."""
        x = self.transformer.encode(x, wav_lens, pad_idx, **kwargs)
        return x

    def forward_streaming(self, x, context):
        """Processes the input audio chunk tensor `x`, using and updating the
        mutable encoder `context`"""
        x = self.transformer.encode_streaming(x, context)
        return x

    def make_streaming_context(self, *args, **kwargs):
        """Initializes a streaming context. Forwards all arguments to the
        underlying transformer. See :meth:`speechbrain.lobes.models.transformer.TransformerASR.make_streaming_context`.
        """
        return self.transformer.make_streaming_context(*args, **kwargs)