jamiya / app /api /routes.py
jameszokah's picture
Integrate WhisperX for improved audio transcription and add real-time conversation support: update requirements to include WhisperX, refactor voice cloning to utilize WhisperX, implement WebSocket endpoints for real-time audio processing, and enhance audio transcription capabilities with alignment options.
be2a132
"""
API routes for the CSM-1B TTS API.
"""
import os
import io
import base64
import time
import tempfile
import logging
import asyncio
from enum import Enum
from typing import Dict, List, Optional, Any, Union
import torch
import torchaudio
import numpy as np
import whisperx
from fastapi import APIRouter, Request, HTTPException, BackgroundTasks, Body, Response, Query, UploadFile, File
from fastapi.responses import StreamingResponse, JSONResponse
from app.api.schemas import SpeechRequest, ResponseFormat, Voice
from app.model import Segment
from app.api.streaming import AudioChunker
from app.prompt_engineering import split_into_segments
# Set up logging
logger = logging.getLogger(__name__)
router = APIRouter()
# Mapping of response_format to MIME types
MIME_TYPES = {
"mp3": "audio/mpeg",
"opus": "audio/opus",
"aac": "audio/aac",
"flac": "audio/flac",
"wav": "audio/wav",
}
# WhisperX model cache for reuse
whisperx_model = None
whisperx_model_lock = asyncio.Lock()
def get_speaker_id(app_state, voice):
"""Helper function to get speaker ID from voice name or ID"""
if hasattr(app_state, "voice_speaker_map") and voice in app_state.voice_speaker_map:
return app_state.voice_speaker_map[voice]
# Standard voices mapping
voice_to_speaker = {"alloy": 0, "echo": 1, "fable": 2, "onyx": 3, "nova": 4, "shimmer": 5}
if voice in voice_to_speaker:
return voice_to_speaker[voice]
# Try parsing as integer
try:
speaker_id = int(voice)
if 0 <= speaker_id < 6:
return speaker_id
except (ValueError, TypeError):
pass
# Check cloned voices if the voice cloner exists
if hasattr(app_state, "voice_cloner") and app_state.voice_cloner is not None:
# Check by ID
if voice in app_state.voice_cloner.cloned_voices:
return app_state.voice_cloner.cloned_voices[voice].speaker_id
# Check by name
for v_id, v_info in app_state.voice_cloner.cloned_voices.items():
if v_info.name.lower() == voice.lower():
return v_info.speaker_id
# Default to alloy
return 0
@router.post("/audio/speech", tags=["Audio"], response_class=Response)
async def generate_speech(
request: Request,
speech_request: SpeechRequest,
):
"""
Generate audio of text being spoken by a realistic voice.
This endpoint is compatible with the OpenAI TTS API.
For streaming responses, use `/v1/audio/speech/streaming` instead.
"""
# Check if model is available
if not hasattr(request.app.state, "generator") or request.app.state.generator is None:
raise HTTPException(status_code=503, detail="TTS model not available")
# Set default values
model = speech_request.model
voice = speech_request.voice
input_text = speech_request.input
response_format = speech_request.response_format
speed = speech_request.speed
temperature = speech_request.temperature
max_audio_length_ms = speech_request.max_audio_length_ms
# Log request details
logger.info(f"TTS request: text length={len(input_text)}, voice={voice}, format={response_format}")
try:
# Get speaker ID for the voice
speaker_id = get_speaker_id(request.app.state, voice)
if speaker_id is None:
raise HTTPException(status_code=400, detail=f"Voice '{voice}' not found")
# Check if this is a cloned voice
voice_info = None
cloned_voice_id = None
if hasattr(request.app.state, "get_voice_info"):
voice_info = request.app.state.get_voice_info(voice)
if voice_info and voice_info["type"] == "cloned":
cloned_voice_id = voice_info["voice_id"]
# Generate audio based on whether it's a standard or cloned voice
if cloned_voice_id is not None and hasattr(request.app.state, "voice_cloner"):
# Generate speech with cloned voice
logger.info(f"Generating speech with cloned voice ID: {cloned_voice_id}")
try:
voice_cloner = request.app.state.voice_cloner
audio = voice_cloner.generate_speech(
text=input_text,
voice_id=cloned_voice_id,
temperature=temperature,
topk=speech_request.topk or 30,
max_audio_length_ms=max_audio_length_ms
)
sample_rate = request.app.state.sample_rate
logger.info(f"Generated speech with cloned voice, length: {len(audio)/sample_rate:.2f}s")
except Exception as e:
logger.error(f"Error generating speech with cloned voice: {e}", exc_info=True)
raise HTTPException(
status_code=500,
detail=f"Failed to generate speech with cloned voice: {str(e)}"
)
else:
# Generate speech with standard voice
# Use voice context from memory if enabled
if hasattr(request.app.state, "voice_memory_enabled") and request.app.state.voice_memory_enabled:
from app.voice_memory import get_voice_context
context = get_voice_context(voice, torch.device(request.app.state.device))
else:
context = []
# Apply optional text enhancement for better voice consistency
enhanced_text = input_text
if hasattr(request.app.state, "prompt_templates"):
from app.prompt_engineering import format_text_for_voice
enhanced_text = format_text_for_voice(input_text, voice)
# Generate audio
audio = request.app.state.generator.generate(
text=enhanced_text,
speaker=speaker_id,
context=context,
temperature=temperature,
topk=speech_request.topk or 50,
max_audio_length_ms=max_audio_length_ms
)
sample_rate = request.app.state.sample_rate
# Process audio for better quality
if hasattr(request.app.state, "voice_enhancement_enabled") and request.app.state.voice_enhancement_enabled:
from app.voice_enhancement import process_generated_audio
audio = process_generated_audio(
audio=audio,
voice_name=voice,
sample_rate=sample_rate,
text=input_text
)
# Update voice memory if enabled
if hasattr(request.app.state, "voice_memory_enabled") and request.app.state.voice_memory_enabled:
from app.voice_memory import update_voice_memory
update_voice_memory(voice, audio, input_text)
# Handle speed adjustments if not 1.0
if speed != 1.0 and speed > 0:
try:
# Adjust speed using torchaudio
effects = [
["tempo", str(speed)]
]
audio_cpu = audio.cpu()
adjusted_audio, _ = torchaudio.sox_effects.apply_effects_tensor(
audio_cpu.unsqueeze(0),
sample_rate,
effects
)
audio = adjusted_audio.squeeze(0)
logger.info(f"Adjusted speech speed to {speed}x")
except Exception as e:
logger.warning(f"Failed to adjust speech speed: {e}")
# Format the audio according to the requested format
response_data, content_type = await format_audio(
audio,
response_format,
sample_rate,
request.app.state
)
# Create and return the response
return Response(
content=response_data,
media_type=content_type,
headers={"Content-Disposition": f"attachment; filename=speech.{response_format}"}
)
except Exception as e:
logger.error(f"Error in text_to_speech: {e}", exc_info=True)
raise HTTPException(status_code=500, detail=str(e))
@router.post("/audio/speech/stream", tags=["Audio"])
async def stream_speech(request: Request, speech_request: SpeechRequest):
"""Stream audio in real-time as it's being generated."""
# Check if model is loaded
if not hasattr(request.app.state, "generator") or request.app.state.generator is None:
raise HTTPException(status_code=503, detail="Model not loaded")
# Get request parameters
input_text = speech_request.input
voice = speech_request.voice
response_format = speech_request.response_format
temperature = speech_request.temperature
logger.info(f"Real-time streaming speech from text ({len(input_text)} chars) with voice '{voice}'")
# Get speaker ID for the voice
speaker_id = get_speaker_id(request.app.state, voice)
if speaker_id is None:
raise HTTPException(status_code=400, detail=f"Voice '{voice}' not found")
# Split text into very small segments for incremental generation
text_segments = split_into_segments(input_text, max_chars=50) # Smaller segments for faster first response
logger.info(f"Split text into {len(text_segments)} segments")
# Create media type based on format
media_type = {
"mp3": "audio/mpeg",
"opus": "audio/opus",
"aac": "audio/aac",
"flac": "audio/flac",
"wav": "audio/wav",
}.get(response_format, "audio/mpeg")
# For streaming, WAV works best
streaming_format = "wav"
# Set up WAV header for streaming
sample_rate = request.app.state.sample_rate
async def generate_streaming_audio():
# Get context for the voice
if hasattr(request.app.state, "voice_cloning_enabled") and request.app.state.voice_cloning_enabled:
voice_info = request.app.state.get_voice_info(voice)
if voice_info and voice_info["type"] == "cloned":
# Use cloned voice context
voice_cloner = request.app.state.voice_cloner
context = voice_cloner.get_voice_context(voice_info["voice_id"])
else:
# Standard voice
from app.voice_enhancement import get_voice_segments
context = get_voice_segments(voice, request.app.state.device)
else:
# Standard voice
from app.voice_enhancement import get_voice_segments
context = get_voice_segments(voice, request.app.state.device)
# Send WAV header immediately
if streaming_format == "wav":
# Create a WAV header for 16-bit mono audio
header = bytes()
# RIFF header
header += b'RIFF'
header += b'\x00\x00\x00\x00' # Placeholder for file size
header += b'WAVE'
# Format chunk
header += b'fmt '
header += (16).to_bytes(4, 'little') # Format chunk size
header += (1).to_bytes(2, 'little') # PCM format
header += (1).to_bytes(2, 'little') # Mono channel
header += (sample_rate).to_bytes(4, 'little') # Sample rate
header += (sample_rate * 2).to_bytes(4, 'little') # Byte rate
header += (2).to_bytes(2, 'little') # Block align
header += (16).to_bytes(2, 'little') # Bits per sample
# Data chunk
header += b'data'
header += b'\x00\x00\x00\x00' # Placeholder for data size
yield header
# Process each segment and stream immediately
for i, segment_text in enumerate(text_segments):
try:
logger.info(f"Generating segment {i+1}/{len(text_segments)}")
# For cloned voices, use the voice cloner
if hasattr(request.app.state, "voice_cloning_enabled") and request.app.state.voice_cloning_enabled:
voice_info = request.app.state.get_voice_info(voice)
if voice_info and voice_info["type"] == "cloned":
# Use cloned voice
voice_cloner = request.app.state.voice_cloner
segment_audio = await asyncio.to_thread(
voice_cloner.generate_speech,
segment_text,
voice_info["voice_id"],
temperature=temperature,
topk=30,
max_audio_length_ms=2000 # Keep it very short for fast generation
)
else:
# Use standard voice with generator
segment_audio = await asyncio.to_thread(
request.app.state.generator.generate,
segment_text,
speaker_id,
context,
max_audio_length_ms=2000, # Short for quicker generation
temperature=temperature
)
else:
# Use standard voice with generator
segment_audio = await asyncio.to_thread(
request.app.state.generator.generate,
segment_text,
speaker_id,
context,
max_audio_length_ms=2000, # Short for quicker generation
temperature=temperature
)
# Skip empty or problematic audio
if segment_audio is None or segment_audio.numel() == 0:
logger.warning(f"Empty audio for segment {i+1}")
continue
# Convert to bytes and stream immediately
buf = io.BytesIO()
audio_to_save = segment_audio.unsqueeze(0) if len(segment_audio.shape) == 1 else segment_audio
torchaudio.save(buf, audio_to_save.cpu(), sample_rate, format=streaming_format)
buf.seek(0)
# For WAV format, skip the header for all segments after the first
if streaming_format == "wav" and i > 0:
buf.seek(44) # Skip WAV header
segment_bytes = buf.read()
yield segment_bytes
# Update context with this segment for next generation
context = [
Segment(
text=segment_text,
speaker=speaker_id,
audio=segment_audio
)
]
except Exception as e:
logger.error(f"Error generating segment {i+1}: {e}")
# Continue to next segment
# Return the streaming response
return StreamingResponse(
generate_streaming_audio(),
media_type=media_type,
headers={
"X-Accel-Buffering": "no", # Prevent buffering in nginx
"Cache-Control": "no-cache, no-store, must-revalidate",
"Connection": "keep-alive",
"Transfer-Encoding": "chunked"
}
)
@router.post("/audio/speech/streaming", tags=["Audio"])
async def openai_stream_speech(
request: Request,
speech_request: SpeechRequest,
):
"""
Stream audio in OpenAI-compatible streaming format.
This endpoint is compatible with the OpenAI streaming TTS API.
"""
# Use the same logic as the stream_speech endpoint but with a different name
# to maintain the OpenAI API naming convention
return await stream_speech(request, speech_request)
async def format_audio(audio, response_format, sample_rate, app_state):
"""
Format audio according to requested format.
Args:
audio: Audio tensor from TTS generation
response_format: Format as string or enum ('mp3', 'opus', 'aac', 'flac', 'wav')
sample_rate: Sample rate of the audio
app_state: FastAPI app state with config and cache settings
Returns:
Tuple of (response_data, content_type)
"""
import io
import torch
import torchaudio
import tempfile
import os
import hashlib
import time
# Handle enum or string for response_format
if hasattr(response_format, 'value'):
response_format = response_format.value
# Normalize response_format to lowercase
response_format = str(response_format).lower()
# Map formats to content types
format_to_content_type = {
'mp3': 'audio/mpeg',
'opus': 'audio/opus',
'aac': 'audio/aac',
'flac': 'audio/flac',
'wav': 'audio/wav'
}
# Ensure response format is supported
if response_format not in format_to_content_type:
logger.warning(f"Unsupported format: {response_format}, defaulting to mp3")
response_format = 'mp3'
# Generate a cache key based on audio content and format
cache_enabled = getattr(app_state, "audio_cache_enabled", False)
cache_key = None
if cache_enabled:
# Generate a hash of the audio tensor for caching
audio_hash = hashlib.md5(audio.cpu().numpy().tobytes()).hexdigest()
cache_key = f"{audio_hash}_{response_format}"
cache_dir = getattr(app_state, "audio_cache_dir", "/app/audio_cache")
os.makedirs(cache_dir, exist_ok=True)
cache_path = os.path.join(cache_dir, f"{cache_key}")
# Check if we have a cache hit
if os.path.exists(cache_path):
try:
with open(cache_path, "rb") as f:
cached_data = f.read()
logger.info(f"Cache hit for {response_format} audio")
return cached_data, format_to_content_type[response_format]
except Exception as e:
logger.warning(f"Error reading from cache: {e}")
# Process audio to the required format
start_time = time.time()
# Move audio to CPU before saving
audio_cpu = audio.cpu()
# Use a temporary file for format conversion
with tempfile.NamedTemporaryFile(suffix=f".{response_format}", delete=False) as temp_file:
temp_path = temp_file.name
try:
if response_format == 'wav':
# Direct save for WAV
torchaudio.save(temp_path, audio_cpu.unsqueeze(0), sample_rate)
else:
# For other formats, first save as WAV then convert
wav_path = f"{temp_path}.wav"
torchaudio.save(wav_path, audio_cpu.unsqueeze(0), sample_rate)
# Use ffmpeg via torchaudio for conversion
if hasattr(torchaudio.backend, 'sox_io_backend'): # New torchaudio structure
if response_format == 'mp3':
# For MP3, use higher quality
sox_effects = torchaudio.sox_effects.SoxEffectsChain()
sox_effects.set_input_file(wav_path)
sox_effects.append_effect_to_chain(["rate", f"{sample_rate}"])
# Higher bitrate for better quality
sox_effects.append_effect_to_chain(["gain", "-n"]) # Normalize
out, _ = sox_effects.sox_build_flow_effects()
torchaudio.save(temp_path, out, sample_rate, format="mp3", compression=128)
elif response_format == 'opus':
# Use ffmpeg for opus through a system call
import subprocess
subprocess.run([
"ffmpeg", "-i", wav_path, "-c:a", "libopus",
"-b:a", "64k", "-vbr", "on", temp_path,
"-y", "-loglevel", "error"
], check=True)
elif response_format == 'aac':
# Use ffmpeg for AAC through a system call
import subprocess
subprocess.run([
"ffmpeg", "-i", wav_path, "-c:a", "aac",
"-b:a", "128k", temp_path,
"-y", "-loglevel", "error"
], check=True)
elif response_format == 'flac':
torchaudio.save(temp_path, audio_cpu.unsqueeze(0), sample_rate, format="flac")
else:
# Fallback using external command
import subprocess
if response_format == 'mp3':
subprocess.run([
"ffmpeg", "-i", wav_path, "-codec:a", "libmp3lame",
"-qscale:a", "2", temp_path,
"-y", "-loglevel", "error"
], check=True)
elif response_format == 'opus':
subprocess.run([
"ffmpeg", "-i", wav_path, "-c:a", "libopus",
"-b:a", "64k", "-vbr", "on", temp_path,
"-y", "-loglevel", "error"
], check=True)
elif response_format == 'aac':
subprocess.run([
"ffmpeg", "-i", wav_path, "-c:a", "aac",
"-b:a", "128k", temp_path,
"-y", "-loglevel", "error"
], check=True)
elif response_format == 'flac':
subprocess.run([
"ffmpeg", "-i", wav_path, "-c:a", "flac", temp_path,
"-y", "-loglevel", "error"
], check=True)
# Clean up the temporary WAV file
try:
os.unlink(wav_path)
except:
pass
# Read the processed audio file
with open(temp_path, "rb") as f:
response_data = f.read()
# Store in cache if enabled
if cache_enabled and cache_key:
try:
cache_path = os.path.join(getattr(app_state, "audio_cache_dir", "/app/audio_cache"), f"{cache_key}")
with open(cache_path, "wb") as f:
f.write(response_data)
logger.debug(f"Cached {response_format} audio with key: {cache_key}")
except Exception as e:
logger.warning(f"Error writing to cache: {e}")
# Log processing time
processing_time = time.time() - start_time
logger.info(f"Processed audio to {response_format} in {processing_time:.3f}s")
return response_data, format_to_content_type[response_format]
except Exception as e:
logger.error(f"Error converting audio to {response_format}: {e}")
# Fallback to WAV if conversion fails
try:
wav_path = f"{temp_path}.wav"
torchaudio.save(wav_path, audio_cpu.unsqueeze(0), sample_rate)
with open(wav_path, "rb") as f:
response_data = f.read()
os.unlink(wav_path)
return response_data, "audio/wav"
except Exception as fallback_error:
logger.error(f"Fallback to WAV also failed: {fallback_error}")
raise RuntimeError(f"Failed to generate audio in any format: {str(e)}")
finally:
# Clean up the temporary file
try:
os.unlink(temp_path)
except:
pass
@router.post("/audio/conversation", tags=["Conversation API"])
async def conversation_to_speech(
request: Request,
text: str = Body(..., description="Text to convert to speech"),
speaker_id: int = Body(0, description="Speaker ID"),
context: List[Dict] = Body([], description="Context segments with speaker, text, and audio path"),
):
"""
Custom endpoint for conversational TTS using CSM-1B.
This is not part of the OpenAI API but provides the unique conversational
capability of the CSM model.
"""
# Get generator from app state
generator = request.app.state.generator
# Validate model availability
if generator is None:
raise HTTPException(status_code=503, detail="Model not loaded")
try:
segments = []
# Process context if provided
for ctx in context:
if 'speaker' not in ctx or 'text' not in ctx or 'audio' not in ctx:
continue
# Audio should be base64-encoded
audio_data = base64.b64decode(ctx['audio'])
audio_file = io.BytesIO(audio_data)
# Save to temporary file for torchaudio
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp:
temp.write(audio_file.read())
temp_path = temp.name
# Load audio
audio_tensor, sample_rate = torchaudio.load(temp_path)
audio_tensor = torchaudio.functional.resample(
audio_tensor.squeeze(0),
orig_freq=sample_rate,
new_freq=generator.sample_rate
)
# Clean up
os.unlink(temp_path)
# Create segment
segments.append(
Segment(
speaker=ctx['speaker'],
text=ctx['text'],
audio=audio_tensor
)
)
logger.info(f"Conversation request: '{text}' with {len(segments)} context segments")
# Format the text for better voice consistency
from app.prompt_engineering import format_text_for_voice
# Determine voice name from speaker_id
voice_names = ["alloy", "echo", "fable", "onyx", "nova", "shimmer"]
voice_name = voice_names[speaker_id] if 0 <= speaker_id < len(voice_names) else "alloy"
formatted_text = format_text_for_voice(text, voice_name)
# Generate audio with context
audio = generator.generate(
text=formatted_text,
speaker=speaker_id,
context=segments,
max_audio_length_ms=20000, # 20 seconds
temperature=0.7, # Lower temperature for more stable output
topk=40,
)
# Process audio for better quality
from app.voice_enhancement import process_generated_audio
processed_audio = process_generated_audio(
audio,
voice_name,
generator.sample_rate,
text
)
# Save to temporary file
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp:
temp_path = temp.name
# Save audio
torchaudio.save(temp_path, processed_audio.unsqueeze(0).cpu(), generator.sample_rate)
# Return audio file
def iterfile():
with open(temp_path, 'rb') as f:
yield from f
# Clean up
if os.path.exists(temp_path):
os.unlink(temp_path)
logger.info(f"Generated conversation response, duration: {processed_audio.shape[0]/generator.sample_rate:.2f}s")
return StreamingResponse(
iterfile(),
media_type="audio/wav",
headers={'Content-Disposition': 'attachment; filename="speech.wav"'}
)
except Exception as e:
import traceback
error_trace = traceback.format_exc()
logger.error(f"Conversation speech generation failed: {str(e)}\n{error_trace}")
raise HTTPException(status_code=500, detail=f"Conversation speech generation failed: {str(e)}")
@router.get("/audio/voices", tags=["Audio"])
async def list_voices(request: Request):
"""
List available voices in a format compatible with OpenAI and OpenWebUI.
"""
# Use app state's get_all_voices function if available
if hasattr(request.app.state, "get_all_voices"):
voices = request.app.state.get_all_voices()
logger.info(f"Listing {len(voices)} voices")
return {"voices": voices}
# Fallback to standard voices if necessary
standard_voices = [
{"voice_id": "alloy", "name": "Alloy"},
{"voice_id": "echo", "name": "Echo"},
{"voice_id": "fable", "name": "Fable"},
{"voice_id": "onyx", "name": "Onyx"},
{"voice_id": "nova", "name": "Nova"},
{"voice_id": "shimmer", "name": "Shimmer"}
]
# Add cloned voices if available
if hasattr(request.app.state, "voice_cloner") and request.app.state.voice_cloner is not None:
cloned_voices = request.app.state.voice_cloner.list_voices()
for voice in cloned_voices:
standard_voices.append({
"voice_id": voice.id, # This has to be specifically voice_id
"name": voice.name # This has to be specifically name
})
logger.info(f"Listing {len(standard_voices)} voices")
return {"voices": standard_voices}
# Add OpenAI-compatible models list endpoint
@router.get("/audio/models", tags=["Audio"], summary="List available audio models")
async def list_models():
"""
OpenAI compatible endpoint that returns a list of available audio models.
"""
models = [
{
"id": "csm-1b",
"name": "CSM-1B",
"description": "Conversational Speech Model 1B from Sesame",
"created": 1716019200, # March 13, 2025 (from the example)
"object": "audio",
"owned_by": "sesame",
"capabilities": {
"tts": True,
"voice_generation": True,
"voice_cloning": hasattr(router.app, "voice_cloner"),
"streaming": True
},
"max_input_length": 4096,
"price": {"text-to-speech": 0.00}
},
{
"id": "tts-1",
"name": "CSM-1B (Compatibility Mode)",
"description": "CSM-1B with OpenAI TTS-1 compatibility",
"created": 1716019200,
"object": "audio",
"owned_by": "sesame",
"capabilities": {
"tts": True,
"voice_generation": True,
"streaming": True
},
"max_input_length": 4096,
"price": {"text-to-speech": 0.00}
},
{
"id": "tts-1-hd",
"name": "CSM-1B (HD Mode)",
"description": "CSM-1B with higher quality settings",
"created": 1716019200,
"object": "audio",
"owned_by": "sesame",
"capabilities": {
"tts": True,
"voice_generation": True,
"streaming": True
},
"max_input_length": 4096,
"price": {"text-to-speech": 0.00}
}
]
return {"data": models, "object": "list"}
# Response format options endpoint
@router.get("/audio/speech/response-formats", tags=["Audio"], summary="List available response formats")
async def list_response_formats():
"""List available response formats for speech synthesis."""
formats = [
{"name": "mp3", "content_type": "audio/mpeg"},
{"name": "opus", "content_type": "audio/opus"},
{"name": "aac", "content_type": "audio/aac"},
{"name": "flac", "content_type": "audio/flac"},
{"name": "wav", "content_type": "audio/wav"}
]
return {"response_formats": formats}
# Streaming format options endpoint
@router.get("/audio/speech/stream-formats", tags=["Audio"], summary="List available streaming formats")
async def list_stream_formats():
"""List available streaming formats for TTS."""
return {
"stream_formats": [
{
"format": "mp3",
"content_type": "audio/mpeg",
"description": "MP3 audio format (streaming)"
},
{
"format": "opus",
"content_type": "audio/opus",
"description": "Opus audio format (streaming)"
},
{
"format": "aac",
"content_type": "audio/aac",
"description": "AAC audio format (streaming)"
},
{
"format": "flac",
"content_type": "audio/flac",
"description": "FLAC audio format (streaming)"
},
{
"format": "wav",
"content_type": "audio/wav",
"description": "WAV audio format (streaming)"
}
]
}
# Simple test endpoint
@router.get("/test", tags=["Utility"], summary="Test endpoint")
async def test_endpoint():
"""Simple test endpoint that returns a successful response."""
return {"status": "ok", "message": "API is working"}
# Debug endpoint
@router.get("/debug", tags=["Utility"], summary="Debug endpoint")
async def debug_info(request: Request):
"""Get debug information about the API."""
generator = request.app.state.generator
# Basic info
debug_info = {
"model_loaded": generator is not None,
"device": generator.device if generator is not None else None,
"sample_rate": generator.sample_rate if generator is not None else None,
}
# Add voice enhancement info if available
try:
from app.voice_enhancement import VOICE_PROFILES
voice_info = {}
for name, profile in VOICE_PROFILES.items():
voice_info[name] = {
"pitch_range": f"{profile.pitch_range[0]}-{profile.pitch_range[1]}Hz",
"timbre": profile.timbre,
"ref_segments": len(profile.reference_segments),
}
debug_info["voice_profiles"] = voice_info
except ImportError:
debug_info["voice_profiles"] = "Not available"
# Add voice cloning info if available
if hasattr(request.app.state, "voice_cloner"):
voice_cloner = request.app.state.voice_cloner
debug_info["voice_cloning"] = {
"enabled": True,
"cloned_voices_count": len(voice_cloner.list_voices()),
"cloned_voices": [v.name for v in voice_cloner.list_voices()]
}
else:
debug_info["voice_cloning"] = {"enabled": False}
# Add streaming info
debug_info["streaming"] = {"enabled": True}
# Add memory usage info for CUDA
if torch.cuda.is_available():
debug_info["cuda"] = {
"allocated_memory_gb": torch.cuda.memory_allocated() / 1e9,
"reserved_memory_gb": torch.cuda.memory_reserved() / 1e9,
"max_memory_gb": torch.cuda.get_device_properties(0).total_memory / 1e9,
}
return debug_info
@router.get("/voice-management/info", tags=["Voice Management"])
async def get_voice_storage_info(request: Request):
"""Get information about voice storage usage and status."""
from app.utils.voice_manager import get_voice_storage_info
return get_voice_storage_info()
@router.post("/voice-management/backup", tags=["Voice Management"])
async def create_voice_backup(request: Request):
"""Create a backup of all voice data."""
from app.utils.voice_manager import backup_voice_data
backup_path = backup_voice_data()
return {"status": "success", "backup_path": backup_path}
@router.post("/voice-management/reset-voices", tags=["Voice Management"])
async def reset_voices(request: Request):
"""Reset voices to their default state."""
from app.utils.voice_manager import restore_default_voices
backup_path = restore_default_voices()
return {"status": "success", "backup_path": backup_path, "message": "Voices reset to default state"}
@router.get("/voice-management/verify-references", tags=["Voice Management"])
async def verify_references(request: Request):
"""Check if voice references are complete and valid."""
from app.utils.voice_manager import verify_voice_references
return verify_voice_references()
# Voice diagnostics endpoint
@router.get("/debug/voices", tags=["Debug"], summary="Voice diagnostics")
async def voice_diagnostics():
"""Get diagnostic information about voice references."""
try:
from app.voice_enhancement import VOICE_PROFILES
diagnostics = {}
for name, profile in VOICE_PROFILES.items():
ref_info = []
for i, ref in enumerate(profile.reference_segments):
if ref is not None:
duration = ref.shape[0] / 24000 # Assume 24kHz
ref_info.append({
"index": i,
"duration_seconds": f"{duration:.2f}",
"samples": ref.shape[0],
"min": float(ref.min()),
"max": float(ref.max()),
"rms": float(torch.sqrt(torch.mean(ref ** 2))),
})
diagnostics[name] = {
"speaker_id": profile.speaker_id,
"pitch_range": f"{profile.pitch_range[0]}-{profile.pitch_range[1]}Hz",
"references": ref_info,
"reference_count": len(ref_info),
}
return {"diagnostics": diagnostics}
except ImportError:
return {"error": "Voice enhancement module not available"}
# Specialized debugging endpoint for speech generation
@router.post("/debug/speech", tags=["Debug"], summary="Debug speech generation")
async def debug_speech(
request: Request,
text: str = Body(..., embed=True),
voice: str = Body("alloy", embed=True),
use_enhancement: bool = Body(True, embed=True)
):
"""Debug endpoint for speech generation with enhancement options."""
generator = request.app.state.generator
if generator is None:
return {"error": "Model not loaded"}
try:
# Convert voice name to speaker ID
voice_map = {
"alloy": 0,
"echo": 1,
"fable": 2,
"onyx": 3,
"nova": 4,
"shimmer": 5
}
speaker = voice_map.get(voice, 0)
# Format text if using enhancement
if use_enhancement:
from app.prompt_engineering import format_text_for_voice
formatted_text = format_text_for_voice(text, voice)
logger.info(f"Using formatted text: {formatted_text}")
else:
formatted_text = text
# Get context if using enhancement
if use_enhancement:
from app.voice_enhancement import get_voice_segments
context = get_voice_segments(voice, generator.device)
logger.info(f"Using {len(context)} context segments")
else:
context = []
# Generate audio
start_time = time.time()
audio = generator.generate(
text=formatted_text,
speaker=speaker,
context=context,
max_audio_length_ms=10000, # 10 seconds
temperature=0.7 if use_enhancement else 0.9,
topk=40 if use_enhancement else 50,
)
generation_time = time.time() - start_time
# Process audio if using enhancement
if use_enhancement:
from app.voice_enhancement import process_generated_audio
start_time = time.time()
processed_audio = process_generated_audio(audio, voice, generator.sample_rate, text)
processing_time = time.time() - start_time
else:
processed_audio = audio
processing_time = 0
# Save to temporary WAV file
temp_path = f"/tmp/debug_speech_{voice}_{int(time.time())}.wav"
torchaudio.save(temp_path, processed_audio.unsqueeze(0).cpu(), generator.sample_rate)
# Also save original if enhanced
if use_enhancement:
orig_path = f"/tmp/debug_speech_{voice}_original_{int(time.time())}.wav"
torchaudio.save(orig_path, audio.unsqueeze(0).cpu(), generator.sample_rate)
else:
orig_path = temp_path
# Calculate audio metrics
duration = processed_audio.shape[0] / generator.sample_rate
rms = float(torch.sqrt(torch.mean(processed_audio ** 2)))
peak = float(processed_audio.abs().max())
return {
"status": "success",
"message": f"Audio generated successfully and saved to {temp_path}",
"audio": {
"duration_seconds": f"{duration:.2f}",
"samples": processed_audio.shape[0],
"sample_rate": generator.sample_rate,
"rms_level": f"{rms:.3f}",
"peak_level": f"{peak:.3f}",
},
"processing": {
"enhancement_used": use_enhancement,
"generation_time_seconds": f"{generation_time:.3f}",
"processing_time_seconds": f"{processing_time:.3f}",
"original_path": orig_path,
"processed_path": temp_path,
}
}
except Exception as e:
import traceback
error_trace = traceback.format_exc()
logger.error(f"Debug speech generation failed: {e}\n{error_trace}")
return {
"status": "error",
"message": str(e),
"traceback": error_trace
}
@router.post("/audio/transcribe", tags=["Audio"], summary="Transcribe audio to text")
async def transcribe_audio(
request: Request,
audio: UploadFile = File(...),
language: Optional[str] = Query(None, description="Language code (e.g., 'en', 'fr', 'de')"),
align_text: bool = Query(False, description="Whether to align text with timestamps"),
compute_type: str = Query("float16", description="Compute type for model inference (float16, int8, float32)"),
):
"""
Transcribe spoken audio to text using WhisperX (faster and more accurate).
Upload audio as a file in any common format (mp3, wav, etc.).
**Parameters:**
- `audio`: Audio file to transcribe
- `language`: Optional language code (auto-detected if not provided)
- `align_text`: Whether to include word-level timestamps
- `compute_type`: Compute type for model inference (float16, int8, float32)
**Response:**
```json
{
"text": "Transcribed text",
"segments": [
{
"start": 0.0,
"end": 2.5,
"text": "Segment text"
}
],
"word_timestamps": [] // If align_text is true
}
```
"""
global whisperx_model
# Create temp directory to store uploaded file
with tempfile.TemporaryDirectory() as temp_dir:
temp_path = os.path.join(temp_dir, f"audio_upload{os.path.splitext(audio.filename)[1]}")
# Save uploaded file to temp directory
try:
content = await audio.read()
with open(temp_path, "wb") as f:
f.write(content)
logger.info(f"Saved uploaded audio to {temp_path}")
# Use lock to ensure model loading is thread-safe
async with whisperx_model_lock:
# Load WhisperX model if not already loaded
if whisperx_model is None:
logger.info("Loading WhisperX model (one-time initialization)")
device = "cuda" if torch.cuda.is_available() else "cpu"
# Use medium model for better accuracy, but small can be used for faster processing
whisperx_model = whisperx.load_model("medium", device, compute_type=compute_type, asr_options={"beam_size": 5})
logger.info(f"WhisperX model loaded on {device} with compute_type={compute_type}")
# Start processing timer
start_time = time.time()
# Specify device for batch processing
device = "cuda" if torch.cuda.is_available() else "cpu"
# Transcribe with WhisperX (much faster than standard whisper)
logger.info(f"Transcribing audio with WhisperX on {device}")
# Process audio file - much faster than standard whisper
# and can process batches concurrently on GPU
result = whisperx_model.transcribe(
temp_path,
language=language,
batch_size=16 if device == "cuda" else 1 # Larger batch size for GPU
)
# Align word timestamps if requested
if align_text and result["segments"]:
try:
# Load alignment model
logger.info("Aligning text with timestamps")
alignment_model, metadata = whisperx.load_align_model(
language_code=result["language"] if language is None else language,
device=device
)
# Align
result = whisperx.align(
result["segments"],
alignment_model,
metadata,
temp_path,
device,
return_char_alignments=False
)
except Exception as e:
logger.warning(f"Word alignment failed: {e}")
# Continue without alignment if it fails
# Calculate processing time
processing_time = time.time() - start_time
# Log results
logger.info(f"Successfully transcribed audio in {processing_time:.2f}s: {result['text'][:50]}...")
# Return results
response = {
"text": result["text"],
"segments": result["segments"],
"language": result.get("language", language),
"processing_time": processing_time
}
# Add word timestamps if available
if align_text and "word_segments" in result:
response["word_timestamps"] = result["word_segments"]
return response
except Exception as e:
logger.error(f"Transcription failed: {e}", exc_info=True)
raise HTTPException(
status_code=500,
detail=f"Failed to transcribe audio: {str(e)}"
)