Spaces:
Running
Running
File size: 47,457 Bytes
383520d be2a132 383520d c27f115 383520d be2a132 383520d 23beeea 383520d 23beeea 383520d be2a132 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 |
"""
API routes for the CSM-1B TTS API.
"""
import os
import io
import base64
import time
import tempfile
import logging
import asyncio
from enum import Enum
from typing import Dict, List, Optional, Any, Union
import torch
import torchaudio
import numpy as np
import whisperx
from fastapi import APIRouter, Request, HTTPException, BackgroundTasks, Body, Response, Query, UploadFile, File
from fastapi.responses import StreamingResponse, JSONResponse
from app.api.schemas import SpeechRequest, ResponseFormat, Voice
from app.model import Segment
from app.api.streaming import AudioChunker
from app.prompt_engineering import split_into_segments
# Set up logging
logger = logging.getLogger(__name__)
router = APIRouter()
# Mapping of response_format to MIME types
MIME_TYPES = {
"mp3": "audio/mpeg",
"opus": "audio/opus",
"aac": "audio/aac",
"flac": "audio/flac",
"wav": "audio/wav",
}
# WhisperX model cache for reuse
whisperx_model = None
whisperx_model_lock = asyncio.Lock()
def get_speaker_id(app_state, voice):
"""Helper function to get speaker ID from voice name or ID"""
if hasattr(app_state, "voice_speaker_map") and voice in app_state.voice_speaker_map:
return app_state.voice_speaker_map[voice]
# Standard voices mapping
voice_to_speaker = {"alloy": 0, "echo": 1, "fable": 2, "onyx": 3, "nova": 4, "shimmer": 5}
if voice in voice_to_speaker:
return voice_to_speaker[voice]
# Try parsing as integer
try:
speaker_id = int(voice)
if 0 <= speaker_id < 6:
return speaker_id
except (ValueError, TypeError):
pass
# Check cloned voices if the voice cloner exists
if hasattr(app_state, "voice_cloner") and app_state.voice_cloner is not None:
# Check by ID
if voice in app_state.voice_cloner.cloned_voices:
return app_state.voice_cloner.cloned_voices[voice].speaker_id
# Check by name
for v_id, v_info in app_state.voice_cloner.cloned_voices.items():
if v_info.name.lower() == voice.lower():
return v_info.speaker_id
# Default to alloy
return 0
@router.post("/audio/speech", tags=["Audio"], response_class=Response)
async def generate_speech(
request: Request,
speech_request: SpeechRequest,
):
"""
Generate audio of text being spoken by a realistic voice.
This endpoint is compatible with the OpenAI TTS API.
For streaming responses, use `/v1/audio/speech/streaming` instead.
"""
# Check if model is available
if not hasattr(request.app.state, "generator") or request.app.state.generator is None:
raise HTTPException(status_code=503, detail="TTS model not available")
# Set default values
model = speech_request.model
voice = speech_request.voice
input_text = speech_request.input
response_format = speech_request.response_format
speed = speech_request.speed
temperature = speech_request.temperature
max_audio_length_ms = speech_request.max_audio_length_ms
# Log request details
logger.info(f"TTS request: text length={len(input_text)}, voice={voice}, format={response_format}")
try:
# Get speaker ID for the voice
speaker_id = get_speaker_id(request.app.state, voice)
if speaker_id is None:
raise HTTPException(status_code=400, detail=f"Voice '{voice}' not found")
# Check if this is a cloned voice
voice_info = None
cloned_voice_id = None
if hasattr(request.app.state, "get_voice_info"):
voice_info = request.app.state.get_voice_info(voice)
if voice_info and voice_info["type"] == "cloned":
cloned_voice_id = voice_info["voice_id"]
# Generate audio based on whether it's a standard or cloned voice
if cloned_voice_id is not None and hasattr(request.app.state, "voice_cloner"):
# Generate speech with cloned voice
logger.info(f"Generating speech with cloned voice ID: {cloned_voice_id}")
try:
voice_cloner = request.app.state.voice_cloner
audio = voice_cloner.generate_speech(
text=input_text,
voice_id=cloned_voice_id,
temperature=temperature,
topk=speech_request.topk or 30,
max_audio_length_ms=max_audio_length_ms
)
sample_rate = request.app.state.sample_rate
logger.info(f"Generated speech with cloned voice, length: {len(audio)/sample_rate:.2f}s")
except Exception as e:
logger.error(f"Error generating speech with cloned voice: {e}", exc_info=True)
raise HTTPException(
status_code=500,
detail=f"Failed to generate speech with cloned voice: {str(e)}"
)
else:
# Generate speech with standard voice
# Use voice context from memory if enabled
if hasattr(request.app.state, "voice_memory_enabled") and request.app.state.voice_memory_enabled:
from app.voice_memory import get_voice_context
context = get_voice_context(voice, torch.device(request.app.state.device))
else:
context = []
# Apply optional text enhancement for better voice consistency
enhanced_text = input_text
if hasattr(request.app.state, "prompt_templates"):
from app.prompt_engineering import format_text_for_voice
enhanced_text = format_text_for_voice(input_text, voice)
# Generate audio
audio = request.app.state.generator.generate(
text=enhanced_text,
speaker=speaker_id,
context=context,
temperature=temperature,
topk=speech_request.topk or 50,
max_audio_length_ms=max_audio_length_ms
)
sample_rate = request.app.state.sample_rate
# Process audio for better quality
if hasattr(request.app.state, "voice_enhancement_enabled") and request.app.state.voice_enhancement_enabled:
from app.voice_enhancement import process_generated_audio
audio = process_generated_audio(
audio=audio,
voice_name=voice,
sample_rate=sample_rate,
text=input_text
)
# Update voice memory if enabled
if hasattr(request.app.state, "voice_memory_enabled") and request.app.state.voice_memory_enabled:
from app.voice_memory import update_voice_memory
update_voice_memory(voice, audio, input_text)
# Handle speed adjustments if not 1.0
if speed != 1.0 and speed > 0:
try:
# Adjust speed using torchaudio
effects = [
["tempo", str(speed)]
]
audio_cpu = audio.cpu()
adjusted_audio, _ = torchaudio.sox_effects.apply_effects_tensor(
audio_cpu.unsqueeze(0),
sample_rate,
effects
)
audio = adjusted_audio.squeeze(0)
logger.info(f"Adjusted speech speed to {speed}x")
except Exception as e:
logger.warning(f"Failed to adjust speech speed: {e}")
# Format the audio according to the requested format
response_data, content_type = await format_audio(
audio,
response_format,
sample_rate,
request.app.state
)
# Create and return the response
return Response(
content=response_data,
media_type=content_type,
headers={"Content-Disposition": f"attachment; filename=speech.{response_format}"}
)
except Exception as e:
logger.error(f"Error in text_to_speech: {e}", exc_info=True)
raise HTTPException(status_code=500, detail=str(e))
@router.post("/audio/speech/stream", tags=["Audio"])
async def stream_speech(request: Request, speech_request: SpeechRequest):
"""Stream audio in real-time as it's being generated."""
# Check if model is loaded
if not hasattr(request.app.state, "generator") or request.app.state.generator is None:
raise HTTPException(status_code=503, detail="Model not loaded")
# Get request parameters
input_text = speech_request.input
voice = speech_request.voice
response_format = speech_request.response_format
temperature = speech_request.temperature
logger.info(f"Real-time streaming speech from text ({len(input_text)} chars) with voice '{voice}'")
# Get speaker ID for the voice
speaker_id = get_speaker_id(request.app.state, voice)
if speaker_id is None:
raise HTTPException(status_code=400, detail=f"Voice '{voice}' not found")
# Split text into very small segments for incremental generation
text_segments = split_into_segments(input_text, max_chars=50) # Smaller segments for faster first response
logger.info(f"Split text into {len(text_segments)} segments")
# Create media type based on format
media_type = {
"mp3": "audio/mpeg",
"opus": "audio/opus",
"aac": "audio/aac",
"flac": "audio/flac",
"wav": "audio/wav",
}.get(response_format, "audio/mpeg")
# For streaming, WAV works best
streaming_format = "wav"
# Set up WAV header for streaming
sample_rate = request.app.state.sample_rate
async def generate_streaming_audio():
# Get context for the voice
if hasattr(request.app.state, "voice_cloning_enabled") and request.app.state.voice_cloning_enabled:
voice_info = request.app.state.get_voice_info(voice)
if voice_info and voice_info["type"] == "cloned":
# Use cloned voice context
voice_cloner = request.app.state.voice_cloner
context = voice_cloner.get_voice_context(voice_info["voice_id"])
else:
# Standard voice
from app.voice_enhancement import get_voice_segments
context = get_voice_segments(voice, request.app.state.device)
else:
# Standard voice
from app.voice_enhancement import get_voice_segments
context = get_voice_segments(voice, request.app.state.device)
# Send WAV header immediately
if streaming_format == "wav":
# Create a WAV header for 16-bit mono audio
header = bytes()
# RIFF header
header += b'RIFF'
header += b'\x00\x00\x00\x00' # Placeholder for file size
header += b'WAVE'
# Format chunk
header += b'fmt '
header += (16).to_bytes(4, 'little') # Format chunk size
header += (1).to_bytes(2, 'little') # PCM format
header += (1).to_bytes(2, 'little') # Mono channel
header += (sample_rate).to_bytes(4, 'little') # Sample rate
header += (sample_rate * 2).to_bytes(4, 'little') # Byte rate
header += (2).to_bytes(2, 'little') # Block align
header += (16).to_bytes(2, 'little') # Bits per sample
# Data chunk
header += b'data'
header += b'\x00\x00\x00\x00' # Placeholder for data size
yield header
# Process each segment and stream immediately
for i, segment_text in enumerate(text_segments):
try:
logger.info(f"Generating segment {i+1}/{len(text_segments)}")
# For cloned voices, use the voice cloner
if hasattr(request.app.state, "voice_cloning_enabled") and request.app.state.voice_cloning_enabled:
voice_info = request.app.state.get_voice_info(voice)
if voice_info and voice_info["type"] == "cloned":
# Use cloned voice
voice_cloner = request.app.state.voice_cloner
segment_audio = await asyncio.to_thread(
voice_cloner.generate_speech,
segment_text,
voice_info["voice_id"],
temperature=temperature,
topk=30,
max_audio_length_ms=2000 # Keep it very short for fast generation
)
else:
# Use standard voice with generator
segment_audio = await asyncio.to_thread(
request.app.state.generator.generate,
segment_text,
speaker_id,
context,
max_audio_length_ms=2000, # Short for quicker generation
temperature=temperature
)
else:
# Use standard voice with generator
segment_audio = await asyncio.to_thread(
request.app.state.generator.generate,
segment_text,
speaker_id,
context,
max_audio_length_ms=2000, # Short for quicker generation
temperature=temperature
)
# Skip empty or problematic audio
if segment_audio is None or segment_audio.numel() == 0:
logger.warning(f"Empty audio for segment {i+1}")
continue
# Convert to bytes and stream immediately
buf = io.BytesIO()
audio_to_save = segment_audio.unsqueeze(0) if len(segment_audio.shape) == 1 else segment_audio
torchaudio.save(buf, audio_to_save.cpu(), sample_rate, format=streaming_format)
buf.seek(0)
# For WAV format, skip the header for all segments after the first
if streaming_format == "wav" and i > 0:
buf.seek(44) # Skip WAV header
segment_bytes = buf.read()
yield segment_bytes
# Update context with this segment for next generation
context = [
Segment(
text=segment_text,
speaker=speaker_id,
audio=segment_audio
)
]
except Exception as e:
logger.error(f"Error generating segment {i+1}: {e}")
# Continue to next segment
# Return the streaming response
return StreamingResponse(
generate_streaming_audio(),
media_type=media_type,
headers={
"X-Accel-Buffering": "no", # Prevent buffering in nginx
"Cache-Control": "no-cache, no-store, must-revalidate",
"Connection": "keep-alive",
"Transfer-Encoding": "chunked"
}
)
@router.post("/audio/speech/streaming", tags=["Audio"])
async def openai_stream_speech(
request: Request,
speech_request: SpeechRequest,
):
"""
Stream audio in OpenAI-compatible streaming format.
This endpoint is compatible with the OpenAI streaming TTS API.
"""
# Use the same logic as the stream_speech endpoint but with a different name
# to maintain the OpenAI API naming convention
return await stream_speech(request, speech_request)
async def format_audio(audio, response_format, sample_rate, app_state):
"""
Format audio according to requested format.
Args:
audio: Audio tensor from TTS generation
response_format: Format as string or enum ('mp3', 'opus', 'aac', 'flac', 'wav')
sample_rate: Sample rate of the audio
app_state: FastAPI app state with config and cache settings
Returns:
Tuple of (response_data, content_type)
"""
import io
import torch
import torchaudio
import tempfile
import os
import hashlib
import time
# Handle enum or string for response_format
if hasattr(response_format, 'value'):
response_format = response_format.value
# Normalize response_format to lowercase
response_format = str(response_format).lower()
# Map formats to content types
format_to_content_type = {
'mp3': 'audio/mpeg',
'opus': 'audio/opus',
'aac': 'audio/aac',
'flac': 'audio/flac',
'wav': 'audio/wav'
}
# Ensure response format is supported
if response_format not in format_to_content_type:
logger.warning(f"Unsupported format: {response_format}, defaulting to mp3")
response_format = 'mp3'
# Generate a cache key based on audio content and format
cache_enabled = getattr(app_state, "audio_cache_enabled", False)
cache_key = None
if cache_enabled:
# Generate a hash of the audio tensor for caching
audio_hash = hashlib.md5(audio.cpu().numpy().tobytes()).hexdigest()
cache_key = f"{audio_hash}_{response_format}"
cache_dir = getattr(app_state, "audio_cache_dir", "/app/audio_cache")
os.makedirs(cache_dir, exist_ok=True)
cache_path = os.path.join(cache_dir, f"{cache_key}")
# Check if we have a cache hit
if os.path.exists(cache_path):
try:
with open(cache_path, "rb") as f:
cached_data = f.read()
logger.info(f"Cache hit for {response_format} audio")
return cached_data, format_to_content_type[response_format]
except Exception as e:
logger.warning(f"Error reading from cache: {e}")
# Process audio to the required format
start_time = time.time()
# Move audio to CPU before saving
audio_cpu = audio.cpu()
# Use a temporary file for format conversion
with tempfile.NamedTemporaryFile(suffix=f".{response_format}", delete=False) as temp_file:
temp_path = temp_file.name
try:
if response_format == 'wav':
# Direct save for WAV
torchaudio.save(temp_path, audio_cpu.unsqueeze(0), sample_rate)
else:
# For other formats, first save as WAV then convert
wav_path = f"{temp_path}.wav"
torchaudio.save(wav_path, audio_cpu.unsqueeze(0), sample_rate)
# Use ffmpeg via torchaudio for conversion
if hasattr(torchaudio.backend, 'sox_io_backend'): # New torchaudio structure
if response_format == 'mp3':
# For MP3, use higher quality
sox_effects = torchaudio.sox_effects.SoxEffectsChain()
sox_effects.set_input_file(wav_path)
sox_effects.append_effect_to_chain(["rate", f"{sample_rate}"])
# Higher bitrate for better quality
sox_effects.append_effect_to_chain(["gain", "-n"]) # Normalize
out, _ = sox_effects.sox_build_flow_effects()
torchaudio.save(temp_path, out, sample_rate, format="mp3", compression=128)
elif response_format == 'opus':
# Use ffmpeg for opus through a system call
import subprocess
subprocess.run([
"ffmpeg", "-i", wav_path, "-c:a", "libopus",
"-b:a", "64k", "-vbr", "on", temp_path,
"-y", "-loglevel", "error"
], check=True)
elif response_format == 'aac':
# Use ffmpeg for AAC through a system call
import subprocess
subprocess.run([
"ffmpeg", "-i", wav_path, "-c:a", "aac",
"-b:a", "128k", temp_path,
"-y", "-loglevel", "error"
], check=True)
elif response_format == 'flac':
torchaudio.save(temp_path, audio_cpu.unsqueeze(0), sample_rate, format="flac")
else:
# Fallback using external command
import subprocess
if response_format == 'mp3':
subprocess.run([
"ffmpeg", "-i", wav_path, "-codec:a", "libmp3lame",
"-qscale:a", "2", temp_path,
"-y", "-loglevel", "error"
], check=True)
elif response_format == 'opus':
subprocess.run([
"ffmpeg", "-i", wav_path, "-c:a", "libopus",
"-b:a", "64k", "-vbr", "on", temp_path,
"-y", "-loglevel", "error"
], check=True)
elif response_format == 'aac':
subprocess.run([
"ffmpeg", "-i", wav_path, "-c:a", "aac",
"-b:a", "128k", temp_path,
"-y", "-loglevel", "error"
], check=True)
elif response_format == 'flac':
subprocess.run([
"ffmpeg", "-i", wav_path, "-c:a", "flac", temp_path,
"-y", "-loglevel", "error"
], check=True)
# Clean up the temporary WAV file
try:
os.unlink(wav_path)
except:
pass
# Read the processed audio file
with open(temp_path, "rb") as f:
response_data = f.read()
# Store in cache if enabled
if cache_enabled and cache_key:
try:
cache_path = os.path.join(getattr(app_state, "audio_cache_dir", "/app/audio_cache"), f"{cache_key}")
with open(cache_path, "wb") as f:
f.write(response_data)
logger.debug(f"Cached {response_format} audio with key: {cache_key}")
except Exception as e:
logger.warning(f"Error writing to cache: {e}")
# Log processing time
processing_time = time.time() - start_time
logger.info(f"Processed audio to {response_format} in {processing_time:.3f}s")
return response_data, format_to_content_type[response_format]
except Exception as e:
logger.error(f"Error converting audio to {response_format}: {e}")
# Fallback to WAV if conversion fails
try:
wav_path = f"{temp_path}.wav"
torchaudio.save(wav_path, audio_cpu.unsqueeze(0), sample_rate)
with open(wav_path, "rb") as f:
response_data = f.read()
os.unlink(wav_path)
return response_data, "audio/wav"
except Exception as fallback_error:
logger.error(f"Fallback to WAV also failed: {fallback_error}")
raise RuntimeError(f"Failed to generate audio in any format: {str(e)}")
finally:
# Clean up the temporary file
try:
os.unlink(temp_path)
except:
pass
@router.post("/audio/conversation", tags=["Conversation API"])
async def conversation_to_speech(
request: Request,
text: str = Body(..., description="Text to convert to speech"),
speaker_id: int = Body(0, description="Speaker ID"),
context: List[Dict] = Body([], description="Context segments with speaker, text, and audio path"),
):
"""
Custom endpoint for conversational TTS using CSM-1B.
This is not part of the OpenAI API but provides the unique conversational
capability of the CSM model.
"""
# Get generator from app state
generator = request.app.state.generator
# Validate model availability
if generator is None:
raise HTTPException(status_code=503, detail="Model not loaded")
try:
segments = []
# Process context if provided
for ctx in context:
if 'speaker' not in ctx or 'text' not in ctx or 'audio' not in ctx:
continue
# Audio should be base64-encoded
audio_data = base64.b64decode(ctx['audio'])
audio_file = io.BytesIO(audio_data)
# Save to temporary file for torchaudio
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp:
temp.write(audio_file.read())
temp_path = temp.name
# Load audio
audio_tensor, sample_rate = torchaudio.load(temp_path)
audio_tensor = torchaudio.functional.resample(
audio_tensor.squeeze(0),
orig_freq=sample_rate,
new_freq=generator.sample_rate
)
# Clean up
os.unlink(temp_path)
# Create segment
segments.append(
Segment(
speaker=ctx['speaker'],
text=ctx['text'],
audio=audio_tensor
)
)
logger.info(f"Conversation request: '{text}' with {len(segments)} context segments")
# Format the text for better voice consistency
from app.prompt_engineering import format_text_for_voice
# Determine voice name from speaker_id
voice_names = ["alloy", "echo", "fable", "onyx", "nova", "shimmer"]
voice_name = voice_names[speaker_id] if 0 <= speaker_id < len(voice_names) else "alloy"
formatted_text = format_text_for_voice(text, voice_name)
# Generate audio with context
audio = generator.generate(
text=formatted_text,
speaker=speaker_id,
context=segments,
max_audio_length_ms=20000, # 20 seconds
temperature=0.7, # Lower temperature for more stable output
topk=40,
)
# Process audio for better quality
from app.voice_enhancement import process_generated_audio
processed_audio = process_generated_audio(
audio,
voice_name,
generator.sample_rate,
text
)
# Save to temporary file
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp:
temp_path = temp.name
# Save audio
torchaudio.save(temp_path, processed_audio.unsqueeze(0).cpu(), generator.sample_rate)
# Return audio file
def iterfile():
with open(temp_path, 'rb') as f:
yield from f
# Clean up
if os.path.exists(temp_path):
os.unlink(temp_path)
logger.info(f"Generated conversation response, duration: {processed_audio.shape[0]/generator.sample_rate:.2f}s")
return StreamingResponse(
iterfile(),
media_type="audio/wav",
headers={'Content-Disposition': 'attachment; filename="speech.wav"'}
)
except Exception as e:
import traceback
error_trace = traceback.format_exc()
logger.error(f"Conversation speech generation failed: {str(e)}\n{error_trace}")
raise HTTPException(status_code=500, detail=f"Conversation speech generation failed: {str(e)}")
@router.get("/audio/voices", tags=["Audio"])
async def list_voices(request: Request):
"""
List available voices in a format compatible with OpenAI and OpenWebUI.
"""
# Use app state's get_all_voices function if available
if hasattr(request.app.state, "get_all_voices"):
voices = request.app.state.get_all_voices()
logger.info(f"Listing {len(voices)} voices")
return {"voices": voices}
# Fallback to standard voices if necessary
standard_voices = [
{"voice_id": "alloy", "name": "Alloy"},
{"voice_id": "echo", "name": "Echo"},
{"voice_id": "fable", "name": "Fable"},
{"voice_id": "onyx", "name": "Onyx"},
{"voice_id": "nova", "name": "Nova"},
{"voice_id": "shimmer", "name": "Shimmer"}
]
# Add cloned voices if available
if hasattr(request.app.state, "voice_cloner") and request.app.state.voice_cloner is not None:
cloned_voices = request.app.state.voice_cloner.list_voices()
for voice in cloned_voices:
standard_voices.append({
"voice_id": voice.id, # This has to be specifically voice_id
"name": voice.name # This has to be specifically name
})
logger.info(f"Listing {len(standard_voices)} voices")
return {"voices": standard_voices}
# Add OpenAI-compatible models list endpoint
@router.get("/audio/models", tags=["Audio"], summary="List available audio models")
async def list_models():
"""
OpenAI compatible endpoint that returns a list of available audio models.
"""
models = [
{
"id": "csm-1b",
"name": "CSM-1B",
"description": "Conversational Speech Model 1B from Sesame",
"created": 1716019200, # March 13, 2025 (from the example)
"object": "audio",
"owned_by": "sesame",
"capabilities": {
"tts": True,
"voice_generation": True,
"voice_cloning": hasattr(router.app, "voice_cloner"),
"streaming": True
},
"max_input_length": 4096,
"price": {"text-to-speech": 0.00}
},
{
"id": "tts-1",
"name": "CSM-1B (Compatibility Mode)",
"description": "CSM-1B with OpenAI TTS-1 compatibility",
"created": 1716019200,
"object": "audio",
"owned_by": "sesame",
"capabilities": {
"tts": True,
"voice_generation": True,
"streaming": True
},
"max_input_length": 4096,
"price": {"text-to-speech": 0.00}
},
{
"id": "tts-1-hd",
"name": "CSM-1B (HD Mode)",
"description": "CSM-1B with higher quality settings",
"created": 1716019200,
"object": "audio",
"owned_by": "sesame",
"capabilities": {
"tts": True,
"voice_generation": True,
"streaming": True
},
"max_input_length": 4096,
"price": {"text-to-speech": 0.00}
}
]
return {"data": models, "object": "list"}
# Response format options endpoint
@router.get("/audio/speech/response-formats", tags=["Audio"], summary="List available response formats")
async def list_response_formats():
"""List available response formats for speech synthesis."""
formats = [
{"name": "mp3", "content_type": "audio/mpeg"},
{"name": "opus", "content_type": "audio/opus"},
{"name": "aac", "content_type": "audio/aac"},
{"name": "flac", "content_type": "audio/flac"},
{"name": "wav", "content_type": "audio/wav"}
]
return {"response_formats": formats}
# Streaming format options endpoint
@router.get("/audio/speech/stream-formats", tags=["Audio"], summary="List available streaming formats")
async def list_stream_formats():
"""List available streaming formats for TTS."""
return {
"stream_formats": [
{
"format": "mp3",
"content_type": "audio/mpeg",
"description": "MP3 audio format (streaming)"
},
{
"format": "opus",
"content_type": "audio/opus",
"description": "Opus audio format (streaming)"
},
{
"format": "aac",
"content_type": "audio/aac",
"description": "AAC audio format (streaming)"
},
{
"format": "flac",
"content_type": "audio/flac",
"description": "FLAC audio format (streaming)"
},
{
"format": "wav",
"content_type": "audio/wav",
"description": "WAV audio format (streaming)"
}
]
}
# Simple test endpoint
@router.get("/test", tags=["Utility"], summary="Test endpoint")
async def test_endpoint():
"""Simple test endpoint that returns a successful response."""
return {"status": "ok", "message": "API is working"}
# Debug endpoint
@router.get("/debug", tags=["Utility"], summary="Debug endpoint")
async def debug_info(request: Request):
"""Get debug information about the API."""
generator = request.app.state.generator
# Basic info
debug_info = {
"model_loaded": generator is not None,
"device": generator.device if generator is not None else None,
"sample_rate": generator.sample_rate if generator is not None else None,
}
# Add voice enhancement info if available
try:
from app.voice_enhancement import VOICE_PROFILES
voice_info = {}
for name, profile in VOICE_PROFILES.items():
voice_info[name] = {
"pitch_range": f"{profile.pitch_range[0]}-{profile.pitch_range[1]}Hz",
"timbre": profile.timbre,
"ref_segments": len(profile.reference_segments),
}
debug_info["voice_profiles"] = voice_info
except ImportError:
debug_info["voice_profiles"] = "Not available"
# Add voice cloning info if available
if hasattr(request.app.state, "voice_cloner"):
voice_cloner = request.app.state.voice_cloner
debug_info["voice_cloning"] = {
"enabled": True,
"cloned_voices_count": len(voice_cloner.list_voices()),
"cloned_voices": [v.name for v in voice_cloner.list_voices()]
}
else:
debug_info["voice_cloning"] = {"enabled": False}
# Add streaming info
debug_info["streaming"] = {"enabled": True}
# Add memory usage info for CUDA
if torch.cuda.is_available():
debug_info["cuda"] = {
"allocated_memory_gb": torch.cuda.memory_allocated() / 1e9,
"reserved_memory_gb": torch.cuda.memory_reserved() / 1e9,
"max_memory_gb": torch.cuda.get_device_properties(0).total_memory / 1e9,
}
return debug_info
@router.get("/voice-management/info", tags=["Voice Management"])
async def get_voice_storage_info(request: Request):
"""Get information about voice storage usage and status."""
from app.utils.voice_manager import get_voice_storage_info
return get_voice_storage_info()
@router.post("/voice-management/backup", tags=["Voice Management"])
async def create_voice_backup(request: Request):
"""Create a backup of all voice data."""
from app.utils.voice_manager import backup_voice_data
backup_path = backup_voice_data()
return {"status": "success", "backup_path": backup_path}
@router.post("/voice-management/reset-voices", tags=["Voice Management"])
async def reset_voices(request: Request):
"""Reset voices to their default state."""
from app.utils.voice_manager import restore_default_voices
backup_path = restore_default_voices()
return {"status": "success", "backup_path": backup_path, "message": "Voices reset to default state"}
@router.get("/voice-management/verify-references", tags=["Voice Management"])
async def verify_references(request: Request):
"""Check if voice references are complete and valid."""
from app.utils.voice_manager import verify_voice_references
return verify_voice_references()
# Voice diagnostics endpoint
@router.get("/debug/voices", tags=["Debug"], summary="Voice diagnostics")
async def voice_diagnostics():
"""Get diagnostic information about voice references."""
try:
from app.voice_enhancement import VOICE_PROFILES
diagnostics = {}
for name, profile in VOICE_PROFILES.items():
ref_info = []
for i, ref in enumerate(profile.reference_segments):
if ref is not None:
duration = ref.shape[0] / 24000 # Assume 24kHz
ref_info.append({
"index": i,
"duration_seconds": f"{duration:.2f}",
"samples": ref.shape[0],
"min": float(ref.min()),
"max": float(ref.max()),
"rms": float(torch.sqrt(torch.mean(ref ** 2))),
})
diagnostics[name] = {
"speaker_id": profile.speaker_id,
"pitch_range": f"{profile.pitch_range[0]}-{profile.pitch_range[1]}Hz",
"references": ref_info,
"reference_count": len(ref_info),
}
return {"diagnostics": diagnostics}
except ImportError:
return {"error": "Voice enhancement module not available"}
# Specialized debugging endpoint for speech generation
@router.post("/debug/speech", tags=["Debug"], summary="Debug speech generation")
async def debug_speech(
request: Request,
text: str = Body(..., embed=True),
voice: str = Body("alloy", embed=True),
use_enhancement: bool = Body(True, embed=True)
):
"""Debug endpoint for speech generation with enhancement options."""
generator = request.app.state.generator
if generator is None:
return {"error": "Model not loaded"}
try:
# Convert voice name to speaker ID
voice_map = {
"alloy": 0,
"echo": 1,
"fable": 2,
"onyx": 3,
"nova": 4,
"shimmer": 5
}
speaker = voice_map.get(voice, 0)
# Format text if using enhancement
if use_enhancement:
from app.prompt_engineering import format_text_for_voice
formatted_text = format_text_for_voice(text, voice)
logger.info(f"Using formatted text: {formatted_text}")
else:
formatted_text = text
# Get context if using enhancement
if use_enhancement:
from app.voice_enhancement import get_voice_segments
context = get_voice_segments(voice, generator.device)
logger.info(f"Using {len(context)} context segments")
else:
context = []
# Generate audio
start_time = time.time()
audio = generator.generate(
text=formatted_text,
speaker=speaker,
context=context,
max_audio_length_ms=10000, # 10 seconds
temperature=0.7 if use_enhancement else 0.9,
topk=40 if use_enhancement else 50,
)
generation_time = time.time() - start_time
# Process audio if using enhancement
if use_enhancement:
from app.voice_enhancement import process_generated_audio
start_time = time.time()
processed_audio = process_generated_audio(audio, voice, generator.sample_rate, text)
processing_time = time.time() - start_time
else:
processed_audio = audio
processing_time = 0
# Save to temporary WAV file
temp_path = f"/tmp/debug_speech_{voice}_{int(time.time())}.wav"
torchaudio.save(temp_path, processed_audio.unsqueeze(0).cpu(), generator.sample_rate)
# Also save original if enhanced
if use_enhancement:
orig_path = f"/tmp/debug_speech_{voice}_original_{int(time.time())}.wav"
torchaudio.save(orig_path, audio.unsqueeze(0).cpu(), generator.sample_rate)
else:
orig_path = temp_path
# Calculate audio metrics
duration = processed_audio.shape[0] / generator.sample_rate
rms = float(torch.sqrt(torch.mean(processed_audio ** 2)))
peak = float(processed_audio.abs().max())
return {
"status": "success",
"message": f"Audio generated successfully and saved to {temp_path}",
"audio": {
"duration_seconds": f"{duration:.2f}",
"samples": processed_audio.shape[0],
"sample_rate": generator.sample_rate,
"rms_level": f"{rms:.3f}",
"peak_level": f"{peak:.3f}",
},
"processing": {
"enhancement_used": use_enhancement,
"generation_time_seconds": f"{generation_time:.3f}",
"processing_time_seconds": f"{processing_time:.3f}",
"original_path": orig_path,
"processed_path": temp_path,
}
}
except Exception as e:
import traceback
error_trace = traceback.format_exc()
logger.error(f"Debug speech generation failed: {e}\n{error_trace}")
return {
"status": "error",
"message": str(e),
"traceback": error_trace
}
@router.post("/audio/transcribe", tags=["Audio"], summary="Transcribe audio to text")
async def transcribe_audio(
request: Request,
audio: UploadFile = File(...),
language: Optional[str] = Query(None, description="Language code (e.g., 'en', 'fr', 'de')"),
align_text: bool = Query(False, description="Whether to align text with timestamps"),
compute_type: str = Query("float16", description="Compute type for model inference (float16, int8, float32)"),
):
"""
Transcribe spoken audio to text using WhisperX (faster and more accurate).
Upload audio as a file in any common format (mp3, wav, etc.).
**Parameters:**
- `audio`: Audio file to transcribe
- `language`: Optional language code (auto-detected if not provided)
- `align_text`: Whether to include word-level timestamps
- `compute_type`: Compute type for model inference (float16, int8, float32)
**Response:**
```json
{
"text": "Transcribed text",
"segments": [
{
"start": 0.0,
"end": 2.5,
"text": "Segment text"
}
],
"word_timestamps": [] // If align_text is true
}
```
"""
global whisperx_model
# Create temp directory to store uploaded file
with tempfile.TemporaryDirectory() as temp_dir:
temp_path = os.path.join(temp_dir, f"audio_upload{os.path.splitext(audio.filename)[1]}")
# Save uploaded file to temp directory
try:
content = await audio.read()
with open(temp_path, "wb") as f:
f.write(content)
logger.info(f"Saved uploaded audio to {temp_path}")
# Use lock to ensure model loading is thread-safe
async with whisperx_model_lock:
# Load WhisperX model if not already loaded
if whisperx_model is None:
logger.info("Loading WhisperX model (one-time initialization)")
device = "cuda" if torch.cuda.is_available() else "cpu"
# Use medium model for better accuracy, but small can be used for faster processing
whisperx_model = whisperx.load_model("medium", device, compute_type=compute_type, asr_options={"beam_size": 5})
logger.info(f"WhisperX model loaded on {device} with compute_type={compute_type}")
# Start processing timer
start_time = time.time()
# Specify device for batch processing
device = "cuda" if torch.cuda.is_available() else "cpu"
# Transcribe with WhisperX (much faster than standard whisper)
logger.info(f"Transcribing audio with WhisperX on {device}")
# Process audio file - much faster than standard whisper
# and can process batches concurrently on GPU
result = whisperx_model.transcribe(
temp_path,
language=language,
batch_size=16 if device == "cuda" else 1 # Larger batch size for GPU
)
# Align word timestamps if requested
if align_text and result["segments"]:
try:
# Load alignment model
logger.info("Aligning text with timestamps")
alignment_model, metadata = whisperx.load_align_model(
language_code=result["language"] if language is None else language,
device=device
)
# Align
result = whisperx.align(
result["segments"],
alignment_model,
metadata,
temp_path,
device,
return_char_alignments=False
)
except Exception as e:
logger.warning(f"Word alignment failed: {e}")
# Continue without alignment if it fails
# Calculate processing time
processing_time = time.time() - start_time
# Log results
logger.info(f"Successfully transcribed audio in {processing_time:.2f}s: {result['text'][:50]}...")
# Return results
response = {
"text": result["text"],
"segments": result["segments"],
"language": result.get("language", language),
"processing_time": processing_time
}
# Add word timestamps if available
if align_text and "word_segments" in result:
response["word_timestamps"] = result["word_segments"]
return response
except Exception as e:
logger.error(f"Transcription failed: {e}", exc_info=True)
raise HTTPException(
status_code=500,
detail=f"Failed to transcribe audio: {str(e)}"
) |