Spaces:
Running
Running
from transformers import GPT2Tokenizer, GPT2LMHeadModel, Trainer, TrainingArguments | |
from datasets import load_dataset | |
import torch | |
# Load the pre-trained GPT-2 model and tokenizer | |
model_name = "gpt2" | |
tokenizer = GPT2Tokenizer.from_pretrained(model_name) | |
model = GPT2LMHeadModel.from_pretrained(model_name) | |
# Load your custom dataset (replace 'path_to_dataset' with your dataset path) | |
# Dataset format should be a text file with one example per line. | |
dataset = load_dataset("text", data_files={"train": "path_to_train.txt", "test": "path_to_test.txt"}) | |
# Tokenize the dataset | |
def tokenize_function(examples): | |
return tokenizer(examples["text"], truncation=True, padding="max_length", max_length=128) | |
tokenized_datasets = dataset.map(tokenize_function, batched=True, remove_columns=["text"]) | |
# Set up data collator (for padding batch sizes) | |
from transformers import DataCollatorForLanguageModeling | |
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False) | |
# Define training arguments | |
training_args = TrainingArguments( | |
output_dir="./results", | |
overwrite_output_dir=True, | |
num_train_epochs=3, | |
per_device_train_batch_size=8, | |
save_steps=500, | |
save_total_limit=2, | |
prediction_loss_only=True, | |
logging_dir="./logs", | |
learning_rate=5e-5, | |
warmup_steps=500, | |
weight_decay=0.01, | |
fp16=torch.cuda.is_available(), | |
evaluation_strategy="steps", | |
eval_steps=500 | |
) | |
# Initialize Trainer | |
trainer = Trainer( | |
model=model, | |
args=training_args, | |
train_dataset=tokenized_datasets["train"], | |
eval_dataset=tokenized_datasets["test"], | |
tokenizer=tokenizer, | |
data_collator=data_collator, | |
) | |
# Fine-tune the model | |
trainer.train() | |
# Save the fine-tuned model | |
trainer.save_model("./fine_tuned_gpt2") | |
tokenizer.save_pretrained("./fine_tuned_gpt2") | |
print("Model fine-tuned and saved successfully!") | |