Project / app.py
izakpaul2002's picture
Create app.py
06a7d5d verified
from transformers import GPT2Tokenizer, GPT2LMHeadModel, Trainer, TrainingArguments
from datasets import load_dataset
import torch
# Load the pre-trained GPT-2 model and tokenizer
model_name = "gpt2"
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
model = GPT2LMHeadModel.from_pretrained(model_name)
# Load your custom dataset (replace 'path_to_dataset' with your dataset path)
# Dataset format should be a text file with one example per line.
dataset = load_dataset("text", data_files={"train": "path_to_train.txt", "test": "path_to_test.txt"})
# Tokenize the dataset
def tokenize_function(examples):
return tokenizer(examples["text"], truncation=True, padding="max_length", max_length=128)
tokenized_datasets = dataset.map(tokenize_function, batched=True, remove_columns=["text"])
# Set up data collator (for padding batch sizes)
from transformers import DataCollatorForLanguageModeling
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
# Define training arguments
training_args = TrainingArguments(
output_dir="./results",
overwrite_output_dir=True,
num_train_epochs=3,
per_device_train_batch_size=8,
save_steps=500,
save_total_limit=2,
prediction_loss_only=True,
logging_dir="./logs",
learning_rate=5e-5,
warmup_steps=500,
weight_decay=0.01,
fp16=torch.cuda.is_available(),
evaluation_strategy="steps",
eval_steps=500
)
# Initialize Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_datasets["train"],
eval_dataset=tokenized_datasets["test"],
tokenizer=tokenizer,
data_collator=data_collator,
)
# Fine-tune the model
trainer.train()
# Save the fine-tuned model
trainer.save_model("./fine_tuned_gpt2")
tokenizer.save_pretrained("./fine_tuned_gpt2")
print("Model fine-tuned and saved successfully!")