Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import GPT2Tokenizer, GPT2LMHeadModel, Trainer, TrainingArguments
|
2 |
+
from datasets import load_dataset
|
3 |
+
import torch
|
4 |
+
|
5 |
+
# Load the pre-trained GPT-2 model and tokenizer
|
6 |
+
model_name = "gpt2"
|
7 |
+
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
|
8 |
+
model = GPT2LMHeadModel.from_pretrained(model_name)
|
9 |
+
|
10 |
+
# Load your custom dataset (replace 'path_to_dataset' with your dataset path)
|
11 |
+
# Dataset format should be a text file with one example per line.
|
12 |
+
dataset = load_dataset("text", data_files={"train": "path_to_train.txt", "test": "path_to_test.txt"})
|
13 |
+
|
14 |
+
# Tokenize the dataset
|
15 |
+
def tokenize_function(examples):
|
16 |
+
return tokenizer(examples["text"], truncation=True, padding="max_length", max_length=128)
|
17 |
+
|
18 |
+
tokenized_datasets = dataset.map(tokenize_function, batched=True, remove_columns=["text"])
|
19 |
+
|
20 |
+
# Set up data collator (for padding batch sizes)
|
21 |
+
from transformers import DataCollatorForLanguageModeling
|
22 |
+
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
|
23 |
+
|
24 |
+
# Define training arguments
|
25 |
+
training_args = TrainingArguments(
|
26 |
+
output_dir="./results",
|
27 |
+
overwrite_output_dir=True,
|
28 |
+
num_train_epochs=3,
|
29 |
+
per_device_train_batch_size=8,
|
30 |
+
save_steps=500,
|
31 |
+
save_total_limit=2,
|
32 |
+
prediction_loss_only=True,
|
33 |
+
logging_dir="./logs",
|
34 |
+
learning_rate=5e-5,
|
35 |
+
warmup_steps=500,
|
36 |
+
weight_decay=0.01,
|
37 |
+
fp16=torch.cuda.is_available(),
|
38 |
+
evaluation_strategy="steps",
|
39 |
+
eval_steps=500
|
40 |
+
)
|
41 |
+
|
42 |
+
# Initialize Trainer
|
43 |
+
trainer = Trainer(
|
44 |
+
model=model,
|
45 |
+
args=training_args,
|
46 |
+
train_dataset=tokenized_datasets["train"],
|
47 |
+
eval_dataset=tokenized_datasets["test"],
|
48 |
+
tokenizer=tokenizer,
|
49 |
+
data_collator=data_collator,
|
50 |
+
)
|
51 |
+
|
52 |
+
# Fine-tune the model
|
53 |
+
trainer.train()
|
54 |
+
|
55 |
+
# Save the fine-tuned model
|
56 |
+
trainer.save_model("./fine_tuned_gpt2")
|
57 |
+
tokenizer.save_pretrained("./fine_tuned_gpt2")
|
58 |
+
|
59 |
+
print("Model fine-tuned and saved successfully!")
|